The Lattice Spacing Variability of Intrinsic Float-Zone Silicon.

Precision lattice spacing comparison measurements at the National Institute of Standards and Technology (NIST) provide traceability of X-ray wavelength and powder diffraction standards to the international system of units (SI). Here, we both summarize and document key measurements from the last two decades on six lots of intrinsic float-zone silicon, including unpublished results and recent internal-consistency checks. The comparison measurements link the unknown lattice spacing of a test crystal to a standard crystal for which the lattice spacing has been accurately determined by X-ray/optical interferometry in units traceable to the definition of the meter. The crystal that serves as the standard in all the comparisons is WASO 04, for which the lattice spacing is known with a relative uncertainty of 5 × 10−9. Individual lattice spacing comparison results have typical uncertainties of 1 ×10−8; taking material variability into account, measurements yield relative uncertainties for the test materials of a few tens of nanometers. It is observed that in the case of nearly perfect modern intrinsic float-zone silicon, the variability of the lattice spacing is sufficiently small that for most diffraction applications, a recommended reference value may be used.

[1]  M. Mendenhall,et al.  Characterization of a self-calibrating, high-precision, stacked-stage, vertical dual-axis goniometer , 2016, Metrologia.

[2]  M. Mendenhall,et al.  High-precision measurement of the x-ray Cu Kα spectrum , 2016, Journal of physics. B, Atomic, molecular, and optical physics : an Institute of Physics journal.

[3]  M. Mendenhall,et al.  The Optics and Alignment of the Divergent Beam Laboratory X-ray Powder Diffractometer and its Calibration Using NIST Standard Reference Materials , 2015, Journal of research of the National Institute of Standards and Technology.

[4]  Marcus H. Mendenhall,et al.  An algorithm for the compensation of short-period errors in optical encoders , 2015 .

[5]  B. Taylor,et al.  CODATA Recommended Values of the Fundamental Physical Constants: 2010 | NIST , 2005, 1203.5425.

[6]  Lawrence T. Hudson,et al.  A simple method for high-precision calibration of long-range errors in an angle encoder using an electronic nulling autocollimator , 2015 .

[7]  Naoki Kuramoto,et al.  Homogeneity Characterization of Lattice Spacing of Silicon Single Crystals , 2015, IEEE Transactions on Instrumentation and Measurement.

[8]  J. Isac,et al.  A vacuum double-crystal spectrometer for reference-free X-ray spectroscopy of highly charged ions , 2014 .

[9]  P. Indelicato,et al.  Ion temperature and x-ray line width measurements of highly charged argon ions in an ECR ion source , 2013 .

[10]  J. Isac,et al.  Absolute measurement of the relativistic magnetic dipole transition energy in heliumlike argon. , 2012, Physical review letters.

[11]  E. Kessler,et al.  Precise silicon die curvature measurements using the NIST lattice comparator: comparisons with coherent gradient sensing interferometry , 2011 .

[12]  Giovanni Mana,et al.  The lattice parameter of the 28Si spheres in the determination of the Avogadro constant , 2011 .

[13]  J. Filliben,et al.  Certification of NIST Standard Reference Material 640d , 2010, Powder Diffraction.

[14]  G. Mana,et al.  Calibration of a silicon crystal for absolute nuclear spectroscopy , 2010 .

[15]  J. Isac,et al.  Electronic temperatures, densities, and plasma x-ray emission of a 14.5 GHz electron-cyclotron resonance ion source. , 2010, The Review of scientific instruments.

[16]  Giovanni Mana,et al.  Measurement of the lattice parameter of a silicon crystal , 2009 .

[17]  G. Mana,et al.  Comparison of the INRIM and PTB lattice-spacing standards , 2009, 0902.0379.

[18]  D. Cox,et al.  Confirmation of the INRiM and PTB Determinations of the Si Lattice Parameter , 2007 .

[19]  Technology,et al.  Precision measurement of the Si-29, S-33, and Cl-36 binding energies , 2005, nucl-ex/0507011.

[20]  E. Kessler,et al.  Precise lattice parameter comparison of highly perfect silicon crystals , 2005 .

[21]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[22]  U. Kuetgens,et al.  Present Status of the a Vogadro Constant Determination from Silicon Crystals with Natural Isotopic Composition , 2004, 2004 Conference on Precision Electromagnetic Measurements.

[23]  H. Fujimoto,et al.  ERRATUM: Measurement repetitions of the Si (220) lattice spacing , 2004 .

[24]  Arnold Nicolaus,et al.  Determination of the Avogadro constant via the silicon route , 2003 .

[25]  Rene Schoedel,et al.  Precise interferometric measurements at single-crystal silicon yielding thermal expansion coefficients from 12° to 28°C and compressibility , 2001, Lasers in Metrology and Art Conservation.

[26]  E. Kessler,et al.  The GAMS4 flat crystal facility , 2001 .

[27]  P. Becker,et al.  The silicon lattice parameter - an invariant quantity of nature? , 1998 .

[28]  E. Kessler,et al.  Silicon lattice comparisons related to the Avogadro project: uniformity of new material and surface preparation effects , 1998, 1998 Conference on Precision Electromagnetic Measurements Digest (Cat. No.98CH36254).

[29]  K. Nakayama,et al.  Progress in the measurement of lattice spacing d(220) of silicon , 1997 .

[30]  J. V. Berkum,et al.  The optimum standard specimen for X-ray diffraction line-profile analysis , 1995, Powder Diffraction.

[31]  Richard D. Deslattes,et al.  Accurate measurement of Mg and Al Kα1,2 X-ray energy profiles , 1994 .

[32]  Basile,et al.  Measurement of the silicon (220) lattice spacing. , 1994, Physical review letters.

[33]  Kessler,et al.  Precision measurements of K and L transitions in xenon: Experiment and theory for the K,L, and M levels. , 1992, Physical Review A. Atomic, Molecular, and Optical Physics.

[34]  P. Becker,et al.  Silicon lattice parameters as an absolute scale of length for high precision measurements of fundamental constants , 1990 .

[35]  G. Ghidini,et al.  Reaction of Oxygen with Si(111) and (100): Critical Conditions for the Growth of SiO2 , 1982 .

[36]  C. V. D. Leun,et al.  The deuteron binding energy , 1982 .

[37]  H. Siegert,et al.  Absolute Measurement of the (220) Lattice Plane Spacing in a Silicon Crystal , 1981 .

[38]  E. P. EerNisse,et al.  Stress in thermal SiO2 during growth , 1979 .

[39]  M. Hart,et al.  A simple Bragg-spacing comparator , 1978 .

[40]  R. D. Deslattes,et al.  Avogadro Constant—Corrections to an Earlier Report , 1976 .

[41]  Richard D. Deslattes,et al.  X-Ray to Visible Wavelength Ratios , 1973 .

[42]  Michael Hart,et al.  High precision lattice parameter measurements by multiple Bragg reflexion diffractometry , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[43]  R. Deslattes Two‐Crystal, Vacuum Monochromator , 1967 .

[44]  H. J. Mcskimin,et al.  Elastic Moduli of Silicon vs Hydrostatic Pressure at 25.0°C and − 195.8°C , 1964 .

[45]  Peter Becker,et al.  Confirmation of the INRiM and PTB Determinations of the Si Lattice Parameter , 2007, IEEE Transactions on Instrumentation and Measurement.

[46]  Naoki Kuramoto,et al.  Present State of the avogadro constant determination from silicon Crystals with natural isotopic compositions , 2005, IEEE Transactions on Instrumentation and Measurement.

[47]  G Mana,et al.  Measurement repetitions of the Si(220) lattice spacing , 2003 .

[48]  B. Taylor,et al.  CODATA Recommended Values of the Fundamental Physical Constants 1998*$\dagger$ , 1999 .