Eigenvalue distribution of large sample covariance matrices of linear processes

We derive the distribution of the eigenvalues of a large sample covariance matrix when the data is dependent in time. More precisely, the dependence for each variable $i=1,...,p$ is modelled as a linear process $(X_{i,t})_{t=1,...,n}=(\sum_{j=0}^\infty c_j Z_{i,t-j})_{t=1,...,n}$, where $\{Z_{i,t}\}$ are assumed to be independent random variables with finite fourth moments. If the sample size $n$ and the number of variables $p=p_n$ both converge to infinity such that $y=\lim_{n\to\infty}{n/p_n}>0$, then the empirical spectral distribution of $p^{-1}\X\X^T$ converges to a non\hyp{}random distribution which only depends on $y$ and the spectral density of $(X_{1,t})_{t\in\Z}$. In particular, our results apply to (fractionally integrated) ARMA processes, which we illustrate by some examples.

[1]  A. Guionnet,et al.  An Introduction to Random Matrices , 2009 .

[2]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[3]  V. Plerou,et al.  Random matrix approach to cross correlations in financial data. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[5]  J. Schmee An Introduction to Multivariate Statistical Analysis , 1986 .

[6]  J. R. M. Hosking,et al.  FRACTIONAL DIFFERENCING MODELING IN HYDROLOGY , 1985 .

[7]  Jean-Philippe Bouchaud,et al.  Financial Applications of Random Matrix Theory: Old Laces and New Pieces , 2005 .

[8]  Guangming Pan,et al.  Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix , 2010, J. Multivar. Anal..

[9]  Robert M. Gray,et al.  Toeplitz And Circulant Matrices: A Review (Foundations and Trends(R) in Communications and Information Theory) , 2006 .

[10]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[11]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[12]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[13]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[14]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[15]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[16]  Maciej A. Nowak,et al.  A random matrix approach to VARMA processes , 2010 .

[17]  W. D. Ray Time Series: Theory and Methods , 1990 .

[18]  Zhidong Bai,et al.  LARGE SAMPLE COVARIANCE MATRICES WITHOUT INDEPENDENCE STRUCTURES IN COLUMNS , 2008 .

[19]  Z. Bai,et al.  Corrections to LRT on large-dimensional covariance matrix by RMT , 2009, 0902.0552.

[20]  T. W. Anderson An Introduction to Multivariate Statistical Analysis, 2nd Edition. , 1985 .

[21]  J. Wishart THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .

[22]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[23]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[24]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .