Membranes in Lithium Ion Batteries

Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

[1]  B. Rånby,et al.  Surface modification by continuous graft copolymerization. I. Photoinitiated graft copolymerization onto polyethylene tape film surface , 1990 .

[2]  Bruno Scrosati,et al.  Role of the polymer matrix in determining the chemical–physical and electrochemical properties of gel polymer electrolytes for lithium batteries , 2007 .

[3]  A. P. Stepanov,et al.  Lithium conductivity and lithium diffusion in NASICON-type Li1+xTi2–xAlx(PO4)3 (x= 0; 0.3) prepared by mechanical activation , 2008 .

[4]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[5]  Kyle R Fenton,et al.  Fast Lithium‐Ion Conducting Thin‐Film Electrolytes Integrated Directly on Flexible Substrates for High‐Power Solid‐State Batteries , 2011, Advanced materials.

[6]  Franciszek Krok,et al.  Star-branched poly(ethylene oxide) LiN(CF3SO2)2: A promising polymer electrolyte , 2009 .

[7]  Pankaj Arora,et al.  Battery separators. , 2004, Chemical reviews.

[8]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON. The Li2S-GeS2-P2S5 System. , 2001 .

[9]  Jong-Hun Kim,et al.  Facile fabrication of nanoporous composite separator membranes for lithium-ion batteries: poly(methyl methacrylate) colloidal particles-embedded nonwoven poly(ethylene terephthalate) , 2011 .

[10]  Joon-Ho Shin,et al.  Effect of fillers on the electrochemical and interfacial properties of PEO–LiN(SO2CF2CF3)2 polymer electrolytes , 2004 .

[11]  Venkataraman Thangadurai,et al.  Lithium Lanthanum Titanates: A Review , 2003 .

[12]  Bruno Scrosati,et al.  PEO-Based Electrolyte Membranes Based on LiBC4 O 8 Salt , 2004 .

[13]  Tao Zhang,et al.  Li-ion transport in all-solid-state lithium batteries with LiCoO2 using NASICON-type glass ceramic electrolytes , 2009 .

[14]  Bruno Scrosati,et al.  Characterization of pan-based gel electrolytes. Electrochemical stability and lithium cyclability , 1994 .

[15]  Hui Ye,et al.  Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends. , 2007, Journal of the Electrochemical Society.

[16]  Venkataraman Thangadurai,et al.  Lithium ion conductivity of Li5+xBaxLa3−xTa2O12 (x = 0–2) with garnet-related structure in dependence of the barium content , 2007 .

[17]  Shengbo Zhang A review on the separators of liquid electrolyte Li-ion batteries , 2007 .

[18]  Tao Zhang,et al.  Li∕Polymer Electrolyte∕Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium–Air Secondary Batteries with an Aqueous Electrolyte , 2008 .

[19]  Venkataraman Thangadurai,et al.  Crystal Structure Revision and Identification of Li+-Ion Migration Pathways in the Garnet-like Li5La3M2O12 (M = Nb, Ta) Oxides , 2004 .

[20]  Binod Kumar,et al.  Space-Charge-Mediated Superionic Transport in Lithium Ion Conducting Glass–Ceramics , 2009 .

[21]  K. M. Abraham,et al.  Li+‐Conductive Solid Polymer Electrolytes with Liquid‐Like Conductivity , 1990 .

[22]  Zhong Ren,et al.  Polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) with crosslinked poly(ethylene glycol) for lithium batteries , 2009 .

[23]  W. Meyer,et al.  Polymer electrolytes for lithium-ion batteries. , 1998, Advanced materials.

[24]  Stefano Passerini,et al.  Poly(ethylene oxide)-LiN(SO2CF2CF3)2 polymer electrolytes. II. Characterization of the interface with lithium , 2002 .

[25]  Hongxia Geng,et al.  Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica , 2008 .

[26]  Venkataraman Thangadurai,et al.  Solid state lithium ion conductors: Design considerations by thermodynamic approach , 2002 .

[27]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[28]  Zhan Lin,et al.  Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators , 2011 .

[29]  Tao Zhang,et al.  A Super High Lithium Ion Conducting Solid Electrolyte of Grain Boundary Modified Li1.4Ti1.6 Al0.4(PO4)3 , 2012 .

[30]  Bruno Scrosati,et al.  Composite gel membranes: a new class of improved polymer electrolytes for lithium batteries , 2001 .

[31]  Stefania Ferrari,et al.  Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid , 2010 .

[32]  Fuminori Mizuno,et al.  All-solid-state lithium secondary batteries using sulfide-based glass–ceramic electrolytes , 2006 .

[33]  Soon Ho Chang,et al.  Thin-film type Li-ion battery, using a polyethylene separator grafted with glycidyl methacrylate , 2004 .

[34]  J. Howard,et al.  Characterization of microporous separators for lithium-ion batteries , 1999 .

[35]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .

[36]  Tomonari Takeuchi,et al.  Upper Voltage and Temperature Dependencies for an All-Solid-State In / LiCoO2 Cell Using Sulfide Glass Electrolyte , 2008 .

[37]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[38]  Tatsuo Nakamura,et al.  Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery , 2008 .

[39]  Peng Zhang,et al.  A novel sandwiched membrane as polymer electrolyte for lithium ion battery , 2007 .

[40]  Jou-Hyeon Ahn,et al.  Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers , 2008 .

[41]  Fuminori Mizuno,et al.  Lithium ion conducting solid electrolytes prepared from Li2S, elemental P and S , 2006 .

[42]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[43]  Volker Hennige,et al.  Ceramic but flexible: new ceramic membrane foils for fuel cells and batteries , 2002 .

[44]  Mi-Sook Won,et al.  Effect of additives in PEO/PAA/PMAA composite solid polymer electrolytes on the ionic conductivity and Li ion battery performance , 2009 .

[45]  Venkataraman Thangadurai,et al.  Effect of lithium ion content on the lithium ion conductivity of the garnet-like structure Li5+xBaLa2Ta2O11.5+0.5x (x = 0–2) , 2008 .

[46]  Zhaohui Li,et al.  Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery , 2009 .

[47]  K. M. Abraham,et al.  Room temperature rechargeable polymer electrolyte batteries , 1995 .

[48]  Huijuan Wang,et al.  Physicochemical properties of poly(ethylene oxide)-based composite polymer electrolytes with a silane-modified mesoporous silica SBA-15 , 2009 .

[49]  R. McGregor Structure and Properties , 1954 .

[50]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[51]  Martin Winter,et al.  UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids , 2010 .

[52]  Alejandro Várez,et al.  Li mobility in Li0.5 − xNaxLa0.5TiO3 perovskites (0 ≤ x ≤ 0.5): Influence of structural and compositional parameters , 2009 .

[53]  Stefano Passerini,et al.  PEO-LiN(SO2CF2CF3)2 polymer electrolytes III. Test in batteries , 2002 .

[54]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[55]  H. C. Chen,et al.  Influence of silica aerogel on the properties of polyethylene oxide-based nanocomposite polymer electrolytes for lithium battery , 2008 .

[56]  C. Wan,et al.  Review of gel-type polymer electrolytes for lithium-ion batteries , 1999 .

[57]  K. M. Abraham,et al.  Polyacrylonitrile electrolyte-based Li ion batteries , 1998 .

[58]  N. Inoue,et al.  Structure and lithium ionic conduction mechanism in La4/3−yLi3yTi2O6 , 2005 .

[59]  Tetsuo Sakai,et al.  Electrochemical Performances of Polyacrylonitrile Nanofiber-Based Nonwoven Separator for Lithium-Ion Battery , 2007 .

[60]  O. Bohnké,et al.  The fast lithium-ion conducting oxides Li3xLa2/3 − xTiO3 from fundamentals to application , 2008 .

[61]  Steve W. Martin,et al.  Ionic conductivity of glasses in the MI + M2S + (0.1Ga2S3 + 0.9GeS2) system (M = Li, Na, K and Cs) , 2008 .

[62]  Masaru Aniya,et al.  Correlation between the temperature range of cooperativity and the fragility index in ion conducting polymers , 2010 .

[63]  Zhong Ren,et al.  A microporous gel electrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery , 2009 .

[64]  Yasuhiko Takahashi,et al.  Synthesis and crystallographic studies of garnet-related lithium-ion conductors Li6CaLa2Ta2O12 and Li6BaLa2Ta2O12 , 2009 .

[65]  Venkataraman Thangadurai,et al.  Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet‐Like Oxides for Fast Lithium Ion Conduction , 2005 .

[66]  Masahiro Tatsumisago,et al.  Structure and properties of Li2S–P2S5–P2S3 glass and glass–ceramic electrolytes , 2009 .

[67]  Xuelin Yang,et al.  High lithium ion conductivity glass-ceramics in Li2O–Al2O3–TiO2–P2O5 from nanoscaled glassy powders by mechanical milling , 2006 .

[68]  Venkataraman Thangadurai,et al.  Lattice Parameter and Sintering Temperature Dependence of Bulk and Grain-Boundary Conduction of Garnet-like Solid Li-Electrolytes , 2008 .

[69]  Tsutomu Minami,et al.  Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries , 2006 .

[70]  Venkataraman Thangadurai,et al.  Crystal Structure Revision and Identification of Li+-Ion Migration Pathways in the Garnet-Like Li5La3M2O12 (M: Nb, Ta) Oxides. , 2004 .

[71]  Zhaohui Li,et al.  A novel sandwiched membrane as polymer electrolyte for application in lithium-ion battery , 2009 .

[72]  Li-Zhen Fan,et al.  Enhanced ionic conductivities in composite polymer electrolytes by using succinonitrile as a plasticizer , 2008 .

[73]  K. M. Abraham,et al.  The Li4Ti5 O 12/PAN Electrolyte// LiMn2 O 4 Rechargeable Battery with Passivation‐Free Electrodes , 1998 .

[74]  Jean-Marie Tarascon,et al.  Performance of Bellcore's plastic rechargeable Li-ion batteries , 1996 .

[75]  E. Sánchez,et al.  Conductivity studies on LiX–Li2S–Sb2S3–P2S5 (X = LiI or Li3PO4) glassy system , 2006 .

[76]  Young-Min Choi,et al.  Electrochemical performance of lithium-ion polymer cell using gel polymer electrolyte based on acrylonitrile-methyl methacrylate-styrene terpolymer , 1999 .

[77]  Kiyoharu Tadanaga,et al.  High-rate performance of all-solid-state lithium secondary batteries using Li4Ti5O12 electrode , 2009 .

[78]  Shejun Hu,et al.  Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery , 2012 .

[79]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[80]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[81]  Bruno Scrosati,et al.  Composite gel-type polymer electrolytes for advanced, rechargeable lithium batteries , 2007 .

[82]  Binod Kumar,et al.  Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic , 2008 .