Algorithms and Data Structures for Truncated Hierarchical B-splines

Tensor–product B–spline surfaces are commonly used as standard modeling tool in Computer Aided Geometric Design and for numerical simulation in Isogeometric Analysis. However, when considering tensor–product grids, there is no possibility of a localized mesh refinement without propagation of the refinement outside the region of interest. The recently introduced truncated hierarchical B–splines (THB–splines) [5] provide the possibility of a local and adaptive refinement procedure, while simultaneously preserving the partition of unity property. We present an effective implementation of the fundamental algorithms needed for the manipulation of THB–spline representations based on standard data structures. By combining a quadtree data structure — which is used to represent the nested sequence of subdomains — with a suitable data structure for sparse matrices, we obtain an efficient technique for the construction and evaluation of THB–splines.

[1]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[2]  David Salesin,et al.  Wavelets for computer graphics: a primer.1 , 1995, IEEE Computer Graphics and Applications.

[3]  Tom Lyche,et al.  Locally Refinable Splines over Box-Partitions , 2012 .

[4]  Bert Jüttler,et al.  Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..

[5]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[6]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[7]  Larry L. Schumaker,et al.  Approximation power of polynomial splines on T-meshes , 2012, Comput. Aided Geom. Des..

[8]  L. Schumaker,et al.  Surface Fitting and Multiresolution Methods , 1997 .

[9]  Sung Yong Shin,et al.  Scattered Data Interpolation with Multilevel B-Splines , 1997, IEEE Trans. Vis. Comput. Graph..

[10]  Günther Greiner,et al.  Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines , 2010 .

[11]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[12]  F. Cirak,et al.  A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .

[13]  David Salesin,et al.  Wavelets for computer graphics: theory and applications , 1996 .

[14]  Carlos Gonzalez-Ochoa,et al.  Localized-hierarchy surface splines (LeSS) , 1999, SI3D.

[15]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[16]  John R. Gilbert,et al.  Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..

[17]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[18]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[19]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[20]  Stefanie Hahmann,et al.  Hierarchical triangular splines , 2005, TOGS.