Modeling magnetic nanotubes using a chain of ellipsoid-rings approach
暂无分享,去创建一个
Xiaoping Song | Sen Yang | Yu Wang | Bo Gao | Chang Han | Zhanbo Sun | Wen Guan | J. Gong | Mingwei Xu | Dong Wang
[1] Tie-Feng Fang,et al. Compensation effect in carbon nanotube quantum dots coupled to polarized electrodes in the presence of spin-orbit coupling , 2011, 1204.3728.
[2] J. Escrig,et al. Experimental evidence for an angular dependent transition of magnetization reversal modes in magnetic nanotubes , 2011 .
[3] J. Escrig,et al. Angular dependence of magnetic properties in Ni nanowire arrays , 2009, 1010.2264.
[4] Xueli Cao,et al. Controlled fabrication of branched Fe nanotubes , 2009 .
[5] J. Escrig,et al. Size effects in ordered arrays of magnetic nanotubes: pick your reversal mode , 2009 .
[6] P. Landeros,et al. Equilibrium states and vortex domain wall nucleation in ferromagnetic nanotubes , 2009 .
[7] Dongdong Li,et al. Template‐based Synthesis and Magnetic Properties of Cobalt Nanotube Arrays , 2008 .
[8] Xue-wei Wang,et al. Electrochemically synthesis and magnetic properties of Ni nanotube arrays with small diameter , 2008 .
[9] J. Escrig,et al. Angular dependence of the transverse and vortex modesin magnetic nanotubes , 2008 .
[10] R. Murakami,et al. A multistep ac electrodeposition method to prepare Co nanowires with high coercivity , 2008 .
[11] J. Escrig,et al. Crossover between two different magnetization reversal modes in arrays of iron oxide nanotubes , 2008, 1106.2833.
[12] M. Vázquez,et al. Radially distributed Ni and Co nanowire arrays , 2007 .
[13] Fei Li,et al. Fabrication and magnetic properties of FeCo alloy nanotube array , 2007 .
[14] J. Escrig,et al. Reversal modes in magnetic nanotubes , 2006, cond-mat/0611234.
[15] Zheng Xu,et al. An Easy Way to Construct an Ordered Array of Nickel Nanotubes: The Triblock‐Copolymer‐Assisted Hard‐Template Method , 2006 .
[16] Lianmao Peng,et al. Electronic, optical, and magnetic properties of Fe-intercalated H2Ti3O7 nanotubes: First-principles calculations and experiments , 2006 .
[17] Xinwei Wang,et al. Chain of ellipsoids approach to the magnetic nanowire , 2005 .
[18] Vijay Kumar,et al. Ferromagnetism and piezomagnetic behavior in Mn-doped germanium nanotubes , 2004 .
[19] Ralph Skomski,et al. Magnetic nanotubes produced by hydrogen reduction , 2004 .
[20] K. Leong,et al. Multifunctional nanorods for gene delivery , 2003, Nature materials.
[21] M. Kryder,et al. Direct observation of magnetization switching in focused-ion-beam-fabricated magnetic nanotubes , 2002 .
[22] Zheng Xu,et al. Template Synthesis of an Array of Nickel Nanotubules and Its Magnetic Behavior , 2001 .
[23] Jie Jiang,et al. Zeeman effect on the electronic spectral properties of carbon nanotubes in an axial magnetic field , 2000 .
[24] A. M. Rao,et al. Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure , 1999 .
[25] A. Scherer,et al. Fabrication and Characterization of Nanoscale Arrays of Nickel Columns , 1997 .
[26] Charlier,et al. Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. , 1996, Physical review. B, Condensed matter.
[27] S. Iijima. Helical microtubules of graphitic carbon , 1991, Nature.
[28] I. S. Jacobs,et al. An Approach to Elongated Fine-Particle Magnets , 1955 .
[29] E. Wohlfarth,et al. A mechanism of magnetic hysteresis in heterogeneous alloys , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.