Modeling magnetic nanotubes using a chain of ellipsoid-rings approach

Numerical calculation of magnetic properties is a very effective way to understand the whole magnetic behavior of nanotubes. Currently, the most studies of calculation of magnetic properties of nanotubes are mainly grounded on the Stoner-Wohlfarth model, starting from an elongated prolate ellipsoid with single domain. But, it is hard to imagine how such an ellipsoid is arranged in the hollow tubular structure, and hence, the realization of predicted magnetic properties has been hindered by the experimental difficulties. In the present article, an alternative model of a chain of ellipsoid-rings is proposed to calculate the magnetic properties of nanotubes, where the chain of rings with ellipsoid particles is assumed to compose a nanotube. Based on this new model, we calculate the magnetic properties of a nanotube and further discuss the influence of tubular geometric parameters on the magnetic properties. All the results are well consistent with the experimental data of a Ni nanotube and, moreover, are ava...

[1]  Tie-Feng Fang,et al.  Compensation effect in carbon nanotube quantum dots coupled to polarized electrodes in the presence of spin-orbit coupling , 2011, 1204.3728.

[2]  J. Escrig,et al.  Experimental evidence for an angular dependent transition of magnetization reversal modes in magnetic nanotubes , 2011 .

[3]  J. Escrig,et al.  Angular dependence of magnetic properties in Ni nanowire arrays , 2009, 1010.2264.

[4]  Xueli Cao,et al.  Controlled fabrication of branched Fe nanotubes , 2009 .

[5]  J. Escrig,et al.  Size effects in ordered arrays of magnetic nanotubes: pick your reversal mode , 2009 .

[6]  P. Landeros,et al.  Equilibrium states and vortex domain wall nucleation in ferromagnetic nanotubes , 2009 .

[7]  Dongdong Li,et al.  Template‐based Synthesis and Magnetic Properties of Cobalt Nanotube Arrays , 2008 .

[8]  Xue-wei Wang,et al.  Electrochemically synthesis and magnetic properties of Ni nanotube arrays with small diameter , 2008 .

[9]  J. Escrig,et al.  Angular dependence of the transverse and vortex modesin magnetic nanotubes , 2008 .

[10]  R. Murakami,et al.  A multistep ac electrodeposition method to prepare Co nanowires with high coercivity , 2008 .

[11]  J. Escrig,et al.  Crossover between two different magnetization reversal modes in arrays of iron oxide nanotubes , 2008, 1106.2833.

[12]  M. Vázquez,et al.  Radially distributed Ni and Co nanowire arrays , 2007 .

[13]  Fei Li,et al.  Fabrication and magnetic properties of FeCo alloy nanotube array , 2007 .

[14]  J. Escrig,et al.  Reversal modes in magnetic nanotubes , 2006, cond-mat/0611234.

[15]  Zheng Xu,et al.  An Easy Way to Construct an Ordered Array of Nickel Nanotubes: The Triblock‐Copolymer‐Assisted Hard‐Template Method , 2006 .

[16]  Lianmao Peng,et al.  Electronic, optical, and magnetic properties of Fe-intercalated H2Ti3O7 nanotubes: First-principles calculations and experiments , 2006 .

[17]  Xinwei Wang,et al.  Chain of ellipsoids approach to the magnetic nanowire , 2005 .

[18]  Vijay Kumar,et al.  Ferromagnetism and piezomagnetic behavior in Mn-doped germanium nanotubes , 2004 .

[19]  Ralph Skomski,et al.  Magnetic nanotubes produced by hydrogen reduction , 2004 .

[20]  K. Leong,et al.  Multifunctional nanorods for gene delivery , 2003, Nature materials.

[21]  M. Kryder,et al.  Direct observation of magnetization switching in focused-ion-beam-fabricated magnetic nanotubes , 2002 .

[22]  Zheng Xu,et al.  Template Synthesis of an Array of Nickel Nanotubules and Its Magnetic Behavior , 2001 .

[23]  Jie Jiang,et al.  Zeeman effect on the electronic spectral properties of carbon nanotubes in an axial magnetic field , 2000 .

[24]  A. M. Rao,et al.  Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure , 1999 .

[25]  A. Scherer,et al.  Fabrication and Characterization of Nanoscale Arrays of Nickel Columns , 1997 .

[26]  Charlier,et al.  Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. , 1996, Physical review. B, Condensed matter.

[27]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[28]  I. S. Jacobs,et al.  An Approach to Elongated Fine-Particle Magnets , 1955 .

[29]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.