A Hermite pseudospectral solver for two-dimensional incompressible flows on infinite domains

The Hermite pseudospectral method is applied to solve the Navier-Stokes equations on a two-dimensional infinite domain. The feature of Hermite function allows us to adopt larger time steps than other spectral methods, but also leads to some extra computation when the stream function is calculated from the vorticity field. The scaling factor is employed to increase the resolution within the region of our main interest, and the aliasing error is fully removed by the 2/3- r u l e . Several traditional numerical experiments are performed with high accuracy, and some related future work on physical applications of this program is also discussed.

[1]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[2]  S. Holmgren,et al.  An adaptive pseudospectral method for wave packet dynamics. , 2012, The Journal of chemical physics.

[3]  Tao Tang,et al.  Combined Hermite spectral-finite difference method for the Fokker-Planck equation , 2002, Math. Comput..

[4]  G. Hagedorn Raising and Lowering Operators for Semiclassical Wave Packets , 1998 .

[5]  Jie Shen,et al.  Some Recent Advances on Spectral Methods for Unbounded Domains , 2008 .

[6]  K. Parand,et al.  An approximate solution of the MHD Falkner-Skan flow by Hermite functions pseudospectral method , 2010, ArXiv.

[7]  Ben-yu Guo,et al.  Error estimation of Hermite spectral method for nonlinear partial differential equations , 1999, Math. Comput..

[8]  Zhong-Qing Wang,et al.  Generalized Hermite Approximations and Spectral Method for Partial Differential Equations in Multiple Dimensions , 2013, J. Sci. Comput..

[9]  D. Funaro,et al.  Approximation of some diffusion evolution equations in unbounded domains by hermite functions , 1991 .

[10]  David Montgomery,et al.  An easily implemented task-based parallel scheme for the Fourier pseudospectral solver applied to 2D Navier–Stokes turbulence , 2004 .

[11]  Mehdi Dehghan,et al.  An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method , 2010, Comput. Phys. Commun..

[12]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[13]  Joseph W. Schumer,et al.  Vlasov Simulations Using Velocity-Scaled Hermite Representations , 1998 .

[14]  James C. McWilliams,et al.  Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation , 1987, Journal of Fluid Mechanics.

[15]  A. Prochazka Stability and structure of stretched vortices , 1997 .

[16]  Sean McKee,et al.  A spectral method for the numerical solutions of a kinetic equation describing the dispersion of small particles in a turbulent flow , 1992 .

[17]  J. A. C. Weideman,et al.  The eigenvalues of Hermite and rational spectral differentiation matrices , 1992 .

[18]  Christian Schmeiser,et al.  A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations , 2007 .

[19]  G. Ben-yu Error estimation of Hermite spectral method for nonlinear partial differential equations , 1999 .

[20]  B. Guo,et al.  Hermite pseudospectral method for nonlinear partial differential equations , 2000 .

[21]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[22]  Dennis M. Healy,et al.  Fast Discrete Polynomial Transforms with Applications to Data Analysis for Distance Transitive Graphs , 1997, SIAM J. Comput..

[23]  P. Gao,et al.  Thermocapillary migration of nondeformable drops , 2008 .

[24]  W. Matthaeus,et al.  Oseen vortex as a maximum entropy state of a two dimensional fluid , 2011 .

[25]  Tao Tang,et al.  The Hermite Spectral Method for Gaussian-Type Functions , 1993, SIAM J. Sci. Comput..

[26]  A. Mariotti,et al.  Vortex stripping and the erosion of coherent structures in two‐dimensional flows , 1994 .

[27]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[28]  Wenrui Hu,et al.  Numerical simulations on thermocapillary migrations of nondeformable droplets with large Marangoni numbers , 2012 .

[29]  Rodrigo B. Platte,et al.  Using Global Interpolation to Evaluate the Biot-Savart Integral for Deformable Elliptical Gaussian Vortex Elements , 2009, SIAM J. Sci. Comput..

[30]  Petros Koumoutsakos,et al.  Inviscid Axisymmetrization of an Elliptical Vortex , 1997 .

[31]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[32]  Gregory S. Chirikjian,et al.  A fast Hermite transform , 2008, Theor. Comput. Sci..