Global sensitivity analysis of (a)symmetric energy harvesters

Parametric variability is inevitable in actual energy harvesters and can define crucial aspects of the system performance, especially in susceptible systems to small perturbations. In this way, this work aims to identify the most critical parameters in the dynamics of (a)symmetric bistable energy harvesters with nonlinear piezoelectric coupling, considering the variability of their physical and excitation parameters. For this purpose, a global sensitivity analysis based on the Sobol' indices is performed by an orthogonal decomposition in terms of conditional variances to access the dependence of the recovered power concerning the harvester parameters. This technique quantifies the variance concerning each parameter individually and jointly regarding the total variation of the model. The results indicate that the frequency and amplitude of excitation, asymmetric bias angle, and piezoelectric coupling at the electrical domain are the most influential parameters that affect the mean power harvested. It has also been shown that the order of importance of the parameters can change from stable conditions. In possession of this, a better understanding of the system under analysis is obtained, identifying vital parameters that rule the change of dynamic behavior and constituting a powerful tool in the robust design and prediction of nonlinear harvesters.

[1]  Noël E. Dutoit,et al.  Experimental Verification of Models for Microfabricated Piezoelectric Vibration Energy Harvesters , 2007 .

[2]  M. Chouchane,et al.  Uncertainty quantification and global sensitivity analysis of piezoelectric energy harvesting using macro fiber composites , 2020, Smart Materials and Structures.

[3]  Pramudita Satria Palar,et al.  Global sensitivity analysis via multi-fidelity polynomial chaos expansion , 2017, Reliab. Eng. Syst. Saf..

[4]  Paulo Sergio Varoto,et al.  Parameter uncertainties in the design and optimization of cantilever piezoelectric energy harvesters , 2017 .

[5]  D. Dane Quinn,et al.  The Effect of Nonlinear Piezoelectric Coupling on Vibration-Based Energy Harvesting , 2008 .

[6]  Karin K. Breitman,et al.  Uncertainty quantification through the Monte Carlo method in a cloud computing setting , 2014, Comput. Phys. Commun..

[7]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[8]  D.P. Arnold,et al.  Review of Microscale Magnetic Power Generation , 2007, IEEE Transactions on Magnetics.

[9]  Brian P. Mann,et al.  Uncertainty in performance for linear and nonlinear energy harvesting strategies , 2012 .

[10]  Americo Cunha,et al.  STONEHENGE - Suite for nonlinear analysis of energy harvesting systems , 2021, Softw. Impacts.

[11]  J. Mi,et al.  A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing , 2020 .

[12]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[13]  Jie Wang,et al.  A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring , 2016, Science Advances.

[14]  Mohammed F. Daqaq,et al.  Influence of potential function asymmetries on the performance of nonlinear energy harvesters under white noise , 2014 .

[15]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[16]  Steffen Marburg,et al.  UNCERTAINTY QUANTIFICATION IN STOCHASTIC SYSTEMS USING POLYNOMIAL CHAOS EXPANSION , 2010 .

[17]  Wei Wang,et al.  Nonlinear dynamics and performance enhancement of asymmetric potential bistable energy harvesters , 2018, Nonlinear Dynamics.

[18]  Lei Jiang,et al.  High-performance silk-based hybrid membranes employed for osmotic energy conversion , 2019, Nature Communications.

[19]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[20]  Alper Erturk,et al.  Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation , 2014, Nonlinear Dynamics.

[21]  E. Halvorsen Fundamental issues in nonlinear wideband-vibration energy harvesting. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  D. Inman,et al.  A piezomagnetoelastic structure for broadband vibration energy harvesting , 2009 .

[23]  A. Erturk,et al.  On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion , 2014 .

[24]  Daniel J. Inman,et al.  Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters , 2012 .

[25]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[26]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[27]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[28]  Benjamin A. Rachunok,et al.  Hurricane-induced power outage risk under climate change is primarily driven by the uncertainty in projections of future hurricane frequency , 2020, Scientific Reports.

[29]  D. Inman,et al.  Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling , 2011 .

[30]  D. Inman,et al.  Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification , 2010 .

[31]  S. Marelli,et al.  A global sensitivity analysis framework for hybrid simulation , 2021 .

[32]  Haichao An,et al.  Investigation of coupled lever-bistable nonlinear energy harvesters for enhancement of inter-well dynamic response , 2019, Nonlinear Dynamics.

[33]  Daniel J. Inman,et al.  An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations , 2009 .

[34]  A. Di Michele,et al.  Energy harvesting from a bio cell , 2018, Nano Energy.

[35]  Americo Cunha,et al.  Nonlinear Characterization of a Bistable Energy Harvester Dynamical System , 2019, Springer Proceedings in Physics.

[36]  Bruno Sudret,et al.  Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation , 2017, Reliability Engineering & System Safety.

[37]  Sergey Oladyshkin,et al.  Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion , 2012, Reliab. Eng. Syst. Saf..

[38]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[39]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[40]  Americo Cunha,et al.  Enhancing the performance of a bistable energy harvesting device via the cross-entropy method , 2021, Nonlinear Dynamics.

[41]  E. Crawley,et al.  Detailed models of piezoceramic actuation of beams , 1989 .

[42]  Ilias Bilionis,et al.  Global sensitivity analysis for the design of nonlinear identification experiments , 2019, Nonlinear Dynamics.

[43]  M. Chouchane,et al.  Global sensitivity analysis of piezoelectric energy harvesters , 2019, Composite Structures.

[44]  G. Litak,et al.  Uncertainty Analysis of Bistable Vibration Energy Harvesters Based on the Improved Interval Extension , 2019, Journal of Vibration Engineering & Technologies.

[45]  Bernard H. Stark,et al.  MEMS electrostatic micropower generator for low frequency operation , 2004 .

[46]  Viviana Meruane,et al.  Uncertainties propagation and global sensitivity analysis of the frequency response function of piezoelectric energy harvesters , 2017 .

[47]  Daniel J. Inman,et al.  Nonlinear time-varying potential bistable energy harvesting from human motion , 2015 .

[48]  Mohammed F. Daqaq,et al.  Influence of Potential Function Asymmetries on the Performance of Nonlinear Energy Harvesters Under White Noise , 2014 .

[49]  Mohammed F. Daqaq,et al.  On the efficacy of charging a battery using a chaotic energy harvester , 2020 .