Large gadolinium nitride cluster encapsulated inside a non-IPR carbon cage: a theoretical characterization on Gd3N@C78.

[1]  Tianming Zuo,et al.  New egg-shaped fullerenes: non-isolated pentagon structures of Tm3N@C(s)(51 365)-C84 and Gd3N@C(s)(51 365)-C84. , 2008, Chemical communications.

[2]  Masahiro Kondo,et al.  Isolation, characterization, and theoretical study of La2@C78. , 2004, Journal of the American Chemical Society.

[3]  Lothar Dunsch,et al.  Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68-98): a density functional theory study. , 2007, Journal of the American Chemical Society.

[4]  N. Martín New challenges in fullerene chemistry. , 2006, Chemical communications.

[5]  Takashi Yumura,et al.  Which do endohedral Ti2C80 metallofullerenes prefer energetically: Ti2@C80 or Ti2C2@C78? A theoretical study. , 2005, The journal of physical chemistry. B.

[6]  Jiechao Ge,et al.  Investigation of Gd3N@C2n (40 n 44) family by Raman and inelastic electron tunneling spectroscopy , 2009, 0910.5273.

[7]  A. Rodríguez‐Fortea,et al.  Endohedral metallofullerenes: a unique host-guest association. , 2011, Chemical Society reviews.

[8]  Shangfeng Yang,et al.  Metal nitride cluster fullerenes: their current state and future prospects. , 2007, Small.

[9]  Marilyn M. Olmstead,et al.  Isolation and Structural Characterization of the Endohedral Fullerene Sc3N@C78 , 2001 .

[10]  H. Shinohara,et al.  Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. , 2001, Bioconjugate chemistry.

[11]  Shangfeng Yang,et al.  A large family of dysprosium-based trimetallic nitride endohedral fullerenes: Dy3N@C2n (39 , 2005, The journal of physical chemistry. B.

[12]  C. de Graaf,et al.  Electronic structure and redox properties of metal nitride endohedral fullerenes M(3)N@C(2n) (M=Sc, Y, La, and Gd; 2n=80, 84, 88, 92, 96). , 2009, Chemistry.

[13]  A. L. Balch,et al.  Isolierung und strukturelle Charakterisierung des endohedralen Fullerens Sc3N@C78 , 2001 .

[14]  Luis Echegoyen,et al.  Chemical, electrochemical, and structural properties of endohedral metallofullerenes. , 2009, Angewandte Chemie.

[15]  Shangfeng Yang,et al.  Endohedral clusterfullerenes--playing with cluster and cage sizes. , 2007, Physical chemistry chemical physics : PCCP.

[16]  Electronic shell structures of Russian-doll-style Sc4C2@C80 , 2011 .

[17]  F. Hagelberg,et al.  Computational Study on C80 Enclosing Mixed Trimetallic Nitride Clusters of the Form GdxM3-xN (M = Sc, Sm, Lu) , 2008 .

[18]  L. Echegoyen,et al.  Bingel-Hirsch reactions on non-IPR Gd3N@C2n (2n = 82 and 84). , 2010, The Journal of organic chemistry.

[19]  Thomas R. Cundari,et al.  Effective core potential methods for the lanthanides , 1993 .

[20]  A. Fisher,et al.  Small-bandgap endohedral metallofullerenes in high yield and purity , 1999, Nature.

[21]  K. Suenaga,et al.  EELS and 13C NMR characterization of pure Ti2@C80 metallofullerene. , 2001, Journal of the American Chemical Society.

[22]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[23]  Zdenek Slanina,et al.  Addition of adamantylidene to La2@C78: isolation and single-crystal X-ray structural determination of the monoadducts. , 2008, Journal of the American Chemical Society.

[24]  W. Mei,et al.  Structural and magnetic properties of Gd3N@C80. , 2006, The journal of physical chemistry. B.

[25]  Matthias Krause,et al.  C78 cage isomerism defined by trimetallic nitride cluster size: a computational and vibrational spectroscopic study. , 2007, The journal of physical chemistry. B.

[26]  S. Okada,et al.  Formation of titanium-carbide in a nanospace of C78 fullerenes , 2007 .

[27]  Xing Lu,et al.  Chemistry of endohedral metallofullerenes: the role of metals. , 2011, Chemical communications.

[28]  Kai Tan,et al.  Ti2C80 is more likely a titanium carbide endohedral metallofullerene (Ti2C2)@C78. , 2005, Chemical communications.

[29]  K. Dinse,et al.  Chemically induced spin transfer to an encased molecular cluster: an EPR study of Sc3N@C80 radical anions. , 2001, Journal of the American Chemical Society.

[30]  Luis Echegoyen,et al.  Large metal ions in a relatively small fullerene cage: the structure of Gd3N@C2(22010)-C78 departs from the isolated pentagon rule. , 2009, Journal of the American Chemical Society.

[31]  S. P. Rath,et al.  Pyramidalization of Gd3N inside a C80 cage. The synthesis and structure of Gd3N@C80. , 2004, Chemical communications.

[32]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[33]  Manuel N. Chaur,et al.  Chemische, elektrochemische und Struktureigenschaften von endohedralen Metallofullerenen , 2009 .

[34]  B. Holloway,et al.  The influence of cage size on the reactivity of trimetallic nitride metallofullerenes: a mono- and bis-methanoadduct of Gd3N@C80 and a monoadduct of Gd3N@C84. , 2008, Chemical communications.

[35]  Jing-Shuang Dang,et al.  Density functional theory characterization of lanthanum nitride endohedral fullerene: La3N@C92 , 2011 .

[36]  Fupin Liu,et al.  Fullerenes encaging metal clusters--clusterfullerenes. , 2011, Chemical communications.

[37]  Luis Echegoyen,et al.  Gd3N@C2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd3N@C88 . , 2007, Journal of the American Chemical Society.

[38]  J. Campanera,et al.  Bonding within the Endohedral Fullerenes Sc3N@C78 and Sc3N@C80 as Determined by Density Functional Calculations and Reexamination of the Crystal Structure of {Sc3N@C78}·Co(OEP)}·1.5(C6H6)·0.3(CHCl3) , 2002 .

[39]  A. Popov,et al.  Vibrational structure of endohedral fullerene Sc3N@C78 (D3h'): evidence for a strong coupling between the Sc3N cluster and C78 cage. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[40]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[41]  Panos P. Fatouros,et al.  High relaxivity trimetallic nitride (Gd3N) metallofullerene MRI contrast agents with optimized functionality. , 2010, Bioconjugate chemistry.

[42]  Marilyn M. Olmstead,et al.  Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? The structure of a second egg-shaped endohedral fullerene--Gd3N@C(s)(39663)-C82. , 2008, Journal of the American Chemical Society.

[43]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[44]  Takeshi Akasaka,et al.  Location of the metal atoms in Ce2@C78 and its bis-silylated derivative. , 2008, Chemical communications.

[45]  L. Echegoyen,et al.  Metallic nitride endohedral fullerenes: synthesis and electrochemical properties , 2008 .