Surface plasmon resonance enhancement of production of H2 from ammonia borane solution with tunable Cu2−xS nanowires decorated by Pd nanoparticles

[1]  M. Navlani-García,et al.  Pd/zeolite-based catalysts for the preferential CO oxidation reaction: ion-exchange, Si/Al and structure effect , 2016 .

[2]  Jiajun Wang,et al.  Preparation of 2D WO3 Nanomaterials with Enhanced Catalytic Activities: Current Status and Perspective , 2015 .

[3]  Yu Huang,et al.  Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions. , 2015, Nano letters.

[4]  Ching-Chun Lin,et al.  Multilevel resistance switching of individual Cu2S nanowires with inert electrodes , 2015 .

[5]  Hexing Li,et al.  Synthesis of Ce ions doped metal–organic framework for promoting catalytic H2 production from ammonia borane under visible light irradiation , 2015 .

[6]  F. Teng,et al.  Tunable near-infrared localized surface plasmon resonances of djurleite nanocrystals: effects of size, shape, surface-ligands and oxygen exposure time , 2015 .

[7]  Jinlong Gong,et al.  Tungsten Oxide Single Crystal Nanosheets for Enhanced Multichannel Solar Light Harvesting , 2015, Advanced materials.

[8]  H. Yamashita,et al.  Harnessing single-active plasmonic nanostructures for enhanced photocatalysis under visible light , 2015 .

[9]  Ying Dai,et al.  Synthesis and Activity of Plasmonic Photocatalysts , 2014 .

[10]  M. Lu,et al.  Sequential cation exchange generated superlattice nanowires forming multiple p-n heterojunctions. , 2014, ACS nano.

[11]  Liberato Manna,et al.  New materials for tunable plasmonic colloidal nanocrystals. , 2014, Chemical Society reviews.

[12]  P. Jain,et al.  Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities. , 2014, The journal of physical chemistry letters.

[13]  Niket Thakkar,et al.  Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals. , 2014, ACS nano.

[14]  C. Sangregorio,et al.  Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions. , 2013, Journal of the American Chemical Society.

[15]  A Paul Alivisatos,et al.  Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition. , 2013, Physical review letters.

[16]  A. Tao,et al.  Effects of Carrier Density and Shape on the Localized Surface Plasmon Resonances of Cu2–xS Nanodisks , 2012 .

[17]  Zhong Lin Wang,et al.  Enhanced Cu₂S/CdS coaxial nanowire solar cells by piezo-phototronic effect. , 2012, Nano letters.

[18]  M. R. Kim,et al.  Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals. , 2011, Journal of the American Chemical Society.

[19]  A Paul Alivisatos,et al.  Localized surface plasmon resonances arising from free carriers in doped quantum dots. , 2011, Nature materials.

[20]  Jun‐Jie Zhu,et al.  Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. , 2009, Journal of the American Chemical Society.

[21]  Qiang Xu,et al.  Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system , 2006 .

[22]  Kai Jiang,et al.  Well‐Defined Non‐spherical Copper Sulfide Mesocages with Single‐Crystalline Shells by Shape‐Controlled Cu2O Crystal Templating , 2006 .

[23]  J. Schoonman,et al.  Comparison of CuxS films grown by atomic layer deposition and chemical vapor deposition , 2005 .

[24]  M. Navlani-García,et al.  Investigation of Pd nanoparticles supported on zeolites for hydrogen production from formic acid dehydrogenation , 2015 .