Revealing the role of hydrogen bond coupling structure for enhanced performance of the solid-state electrolyte.

[1]  L. Fu,et al.  The Critical Role of Fillers in Composite Polymer Electrolytes for Lithium Battery , 2023, Nano-Micro Letters.

[2]  Yong Yang,et al.  Reinforced cathode-garnet interface for high-capacity all-solid-state batteries , 2022, Materials Futures.

[3]  Weiqing Yang,et al.  Low‐Enthalpy and High‐Entropy Polymer Electrolytes for Li‐Metal Battery , 2022, ENERGY & ENVIRONMENTAL MATERIALS.

[4]  Ning Wang,et al.  Borderline Metal Centers on Nonporous Metal-Organic Framework Nanowire Boost Fast Li-Ion Interfacial Transport of Composite Polymer Electrolyte. , 2022, Small.

[5]  Ruizhi Yang,et al.  Enhanced Electrochemical Proterties and Optimiazed Li + Transmission Pathways of PEO / LLZTO‐Based Composite Electrolytes Modified by Supramolecular Combination , 2022, ENERGY & ENVIRONMENTAL MATERIALS.

[6]  Jianneng Liang,et al.  Insight into the Integration Way of Ceramic Solid-State Electrolyte Fillers in the Composite Electrolyte for High Performance Solid-State Lithium Metal Battery , 2022, SSRN Electronic Journal.

[7]  M. Zhang,et al.  Constructing the high-areal-capacity, solid-state Li polymer battery via the multiscale ion transport pathway design , 2022, Materials Today.

[8]  Y. Ye,et al.  Scalable, Ultrathin, and High‐Temperature‐Resistant Solid Polymer Electrolytes for Energy‐Dense Lithium Metal Batteries , 2022, Advanced Energy Materials.

[9]  Xiangcun Li,et al.  PAN electrospun nanofiber skeleton induced MOFs continuous distribution in MMMs to boost CO2 capture , 2022, Journal of Membrane Science.

[10]  Siyuan Li,et al.  Designing safer lithium-based batteries with nonflammable electrolytes: A review , 2021, eScience.

[11]  Guohua Chen,et al.  Cyclodextrin-Integrated PEO-Based Composite Solid Electrolytes for High-Rate and Ultrastable All-Solid-State Lithium Batteries. , 2021, ACS applied materials & interfaces.

[12]  Weiqing Yang,et al.  Physicochemically dendrite-suppressed three-dimensional fluoridation solid-state electrolyte for high-rate lithium metal battery , 2021, Cell Reports Physical Science.

[13]  Z. Bi,et al.  Heterogeneous electrolyte membranes enabling double-side stable interfaces for solid lithium batteries , 2021 .

[14]  Zheng Zhang,et al.  MOF-derived multifunctional filler reinforced polymer electrolyte for solid-state lithium batteries , 2021 .

[15]  Lei Song,et al.  Flame-Retardant ADP/PEO Solid Polymer Electrolyte for Dendrite-Free and Long-Life Lithium Battery by Generating Al, P-rich SEI Layer. , 2021, Nano letters.

[16]  Ningxin Zhang,et al.  Novel anion exchange membrane with poly ionic liquid-confined hypercrosslinked polymer for enhanced anion conduction and stability , 2021 .

[17]  Pei Dong,et al.  A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase , 2021, Advanced Energy Materials.

[18]  B. Tan,et al.  Low‐Cost Hypercrosslinked Polymers by Direct Knitting Strategy for Catalytic Applications , 2020, Advanced Functional Materials.

[19]  Jun Lu,et al.  Polycation ionic liquid tailored PEO-based solid polymer electrolytes for high temperature lithium metal batteries , 2020 .

[20]  Xiulin Fan,et al.  Solid‐State Electrolyte Design for Lithium Dendrite Suppression , 2020, Advanced materials.

[21]  Yusheng Zhao,et al.  Metal–organic frameworks for solid-state electrolytes , 2020 .

[22]  Xuejun Zhou,et al.  Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting , 2020, Nature Communications.

[23]  M. Armand,et al.  Mobile Ions in Composite Solids. , 2020, Chemical reviews.

[24]  Liquan Chen,et al.  Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. , 2019, Chemical reviews.

[25]  L. Shao,et al.  Mesoporous dendritic fibrous nanosilica (DFNS) stimulating mix matrix membranes towards superior CO2 capture , 2019, Journal of Membrane Science.

[26]  G. Cui,et al.  Intermolecular Chemistry in Solid Polymer Electrolytes for High‐Energy‐Density Lithium Batteries , 2019, Advanced materials.

[27]  T. Lodge,et al.  Effect of Ionic Liquid Components on the Coil Dimensions of PEO , 2019, Macromolecules.

[28]  F. Mashayek,et al.  Lithium Diffusion Mechanism through Solid–Electrolyte Interphase in Rechargeable Lithium Batteries , 2019, The Journal of Physical Chemistry C.

[29]  Hongwei Chen,et al.  Porous covalent organic frameworks for high transference number polymer-based electrolytes. , 2019, Chemical communications.

[30]  T. Asano,et al.  Solid Halide Electrolytes with High Lithium‐Ion Conductivity for Application in 4 V Class Bulk‐Type All‐Solid‐State Batteries , 2018, Advanced materials.

[31]  Yayuan Liu,et al.  A Silica‐Aerogel‐Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus , 2018, Advanced materials.

[32]  Jonas Mindemark,et al.  Beyond PEO—Alternative host materials for Li + -conducting solid polymer electrolytes , 2018, Progress in Polymer Science.

[33]  Yayuan Liu,et al.  Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity. , 2018, Nano letters.

[34]  Liumin Suo,et al.  Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries , 2018, Proceedings of the National Academy of Sciences.

[35]  S. Turner,et al.  Hypercrosslinked Polymers: A Review , 2018 .

[36]  Yutao Li,et al.  PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic” , 2017 .

[37]  M. Dincǎ,et al.  Single-Ion Li+, Na+, and Mg2+ Solid Electrolytes Supported by a Mesoporous Anionic Cu-Azolate Metal-Organic Framework. , 2017, Journal of the American Chemical Society.

[38]  B. Tan,et al.  Hypercrosslinked porous polymer materials: design, synthesis, and applications. , 2017, Chemical Society reviews.

[39]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[40]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[41]  W. Wang,et al.  A New Strategy to Microporous Polymers: Knitting Rigid Aromatic Building Blocks by External Cross-Linker , 2011 .

[42]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[43]  K. S. Nahm,et al.  Review on composite polymer electrolytes for lithium batteries , 2006 .

[44]  F. Chang,et al.  Hydrogen bonding effect on the poly(ethylene oxide), phenolic resin, and lithium perchlorate-based solid-state electrolyte , 2004 .

[45]  J. Dygas,et al.  Effects of inhomogeneity on ionic conductivity and relaxations in PEO and PEO–salt complexes , 2003 .

[46]  S. Prabaharan,et al.  Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers , 1997 .

[47]  Genfu Zhao,et al.  Covalent Organic Frameworks for Solid-State Electrolytes of Lithium Metal Batteries , 2022, Journal of Materials Chemistry A.

[48]  Jian Sun,et al.  Roles of Ionic Liquids in Adjusting Nature of Ionogels: A Mini Review , 2022 .