A comparison of SMA (styrene maleic acid) and DIBMA (di-isobutylene maleic acid) for membrane protein purification.

[1]  Benjamin S. Hanson,et al.  Nano-encapsulated Escherichia coli Divisome Anchor ZipA, and in Complex with FtsZ , 2019, Scientific Reports.

[2]  A. Meister,et al.  Influence of Mg2+ and Ca2+ on nanodisc formation by diisobutylene/maleic acid (DIBMA) copolymer. , 2019, Chemistry and physics of lipids.

[3]  S. Hall,et al.  Examining the stability of membrane proteins within SMALPs , 2019, European Polymer Journal.

[4]  J. Frank,et al.  Structure and activity of lipid bilayer within a membrane-protein transporter , 2018, Proceedings of the National Academy of Sciences.

[5]  A. Jawhari,et al.  The yin and yang of solubilization and stabilization for wild-type and full-length membrane protein. , 2018, Methods.

[6]  E. Tajkhorshid,et al.  Structure of the Alternative Complex III in a supercomplex with cytochrome oxidase , 2018, Nature.

[7]  A. Rothnie,et al.  Structure and function of membrane proteins encapsulated in a polymer-bound lipid bilayer. , 2017, Biochimica et biophysica acta. Biomembranes.

[8]  G. Pabst,et al.  Formation of Lipid-Bilayer Nanodiscs by Diisobutylene/Maleic Acid (DIBMA) Copolymer. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[9]  J. Killian,et al.  The effectiveness of styrene-maleic acid (SMA) copolymers for solubilisation of integral membrane proteins from SMA-accessible and SMA-resistant membranes , 2017, Biochimica et biophysica acta. Biomembranes.

[10]  J. Broecker,et al.  Crystallogenesis of Membrane Proteins Mediated by Polymer-Bounded Lipid Nanodiscs. , 2017, Structure.

[11]  A. Meister,et al.  Solubilization of Membrane Proteins into Functional Lipid‐Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer , 2017, Angewandte Chemie.

[12]  T. Knowles,et al.  University of Birmingham Membrane protein extraction and purification using styrene–maleic acid (SMA) copolymer: effect of variations in polymer structure , 2016 .

[13]  A. Rothnie Detergent-Free Membrane Protein Purification. , 2016, Methods in molecular biology.

[14]  A. Goldman,et al.  A method for detergent-free isolation of membrane proteins in their local lipid environment , 2016, Nature Protocols.

[15]  S. Sligar,et al.  Nanodiscs for structural and functional studies of membrane proteins , 2016, Nature Structural &Molecular Biology.

[16]  O. Nosjean,et al.  Detergent-free Isolation of Functional G Protein-Coupled Receptors into Nanometric Lipid Particles. , 2016, Biochemistry.

[17]  G. Altenberg,et al.  The Lipid Bilayer Modulates the Structure and Function of an ATP-binding Cassette Exporter* , 2016, The Journal of Biological Chemistry.

[18]  B. Kobilka,et al.  Allosteric regulation of G protein-coupled receptor activity by phospholipids. , 2016, Nature chemical biology.

[19]  V. Jaakola,et al.  Expression, purification and functional characterization of human equilibrative nucleoside transporter subtype-1 (hENT1) protein from Sf9 insect cells. , 2015, Protein expression and purification.

[20]  Roslyn M. Bill,et al.  G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent , 2015, Bioscience reports.

[21]  S. Faham,et al.  Bicelles coming of age: an empirical approach to bicelle crystallization. , 2015, Methods in enzymology.

[22]  J. Killian,et al.  Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: The power of native nanodiscs , 2014, Proceedings of the National Academy of Sciences.

[23]  J. Popot,et al.  Amphipols for Each Season , 2014, The Journal of Membrane Biology.

[24]  J. Killian,et al.  Bacterial Reaction Centers Purified with Styrene Maleic Acid Copolymer Retain Native Membrane Functional Properties and Display Enhanced Stability** , 2014, Angewandte Chemie.

[25]  Mohammed Jamshad,et al.  Detergent-free purification of ABC (ATP-binding-cassette) transporters. , 2014, The Biochemical journal.

[26]  J. Ruysschaert,et al.  Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins , 2014, Nano Research.

[27]  D. Poyner,et al.  Extracellular loops 1 and 3 and their associated transmembrane regions of the calcitonin receptor-like receptor are needed for CGRP receptor function , 2011, Biochimica et biophysica acta.

[28]  T. Knowles,et al.  Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. , 2009, Journal of the American Chemical Society.

[29]  K. Linton,et al.  The Topography of Transmembrane Segment Six Is Altered during the Catalytic Cycle of P-glycoprotein* , 2004, Journal of Biological Chemistry.

[30]  Melanie G. Lee,et al.  RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor , 1998, Nature.

[31]  Vlad I. Morariu,et al.  Expression , 2015, Principles of Molecular Virology.