Covalent Organic Frameworks as Promising Electrode Materials for High-Valent Ion Rechargeable Batteries

[1]  Xiaobo Ji,et al.  Metallic Particles‐Induced Surface Reconstruction Enabling Highly Durable Zinc Metal Anode , 2023, Advanced Functional Materials.

[2]  Drew C. Higgins,et al.  Zinc-ion batteries for stationary energy storage , 2023, Joule.

[3]  G. Wang,et al.  Redox-Bipolar Polyimide Two-Dimensional Covalent Organic Framework Cathodes for Durable Aluminium Batteries. , 2023, Angewandte Chemie.

[4]  Hao Zhang,et al.  A Multifunctional Organic Electrolyte Additive for Aqueous Zinc Ion Batteries Based on Polyaniline Cathode. , 2023, Small.

[5]  J. Bao,et al.  Implanting CuS Quantum Dots into Carbon Nanorods for Efficient Magnesium-Ion Batteries. , 2023, Small.

[6]  Xiaosi Zhou,et al.  Recent Advances in Covalent Organic Framework Electrode Materials for Alkali-Metal Ion Batteries , 2023, CCS Chemistry.

[7]  Xun Guo,et al.  Metal/covalent organic frameworks for aqueous rechargeable zinc-ion batteries , 2023, Science China Chemistry.

[8]  Xiaodong Zhuang,et al.  Supramolecular Engineering of Cathode Materials for Aqueous Zinc-ion Energy Storage Devices: Novel Benzothiadiazole Functionalized Two-Dimensional Olefin-Linked COFs. , 2023, Angewandte Chemie.

[9]  Sihong Liu,et al.  Emerging Organic Electrodes for Na-ion and K-ion Batteries , 2023, Energy Storage Materials.

[10]  Zhengnan Tian,et al.  A Symmetric Aqueous Magnesium Ion Supercapattery Based on Covalent Organic Frameworks , 2022, Advanced Energy Materials.

[11]  Cuiping Han,et al.  Proton storage chemistry in aqueous zinc‐organic batteries: A review , 2022, InfoMat.

[12]  Kristin A. Persson,et al.  Reductive Decomposition Kinetics and Thermodynamics That Govern the Design of Fluorinated Alkoxyaluminate/Borate Salts for Mg-Ion and Ca-Ion Batteries , 2022, The Journal of Physical Chemistry C.

[13]  Xing Wu,et al.  Advanced Covalent Organic Frameworks for Multi Valent Metal Ion Batteries. , 2022, Chemistry.

[14]  S. Qiu,et al.  Three-Dimensional Covalent Organic Frameworks: From Synthesis to Application. , 2022, Angewandte Chemie.

[15]  Yang Jin,et al.  Rechargeable Batteries for Grid Scale Energy Storage. , 2022, Chemical reviews.

[16]  Baohua Li,et al.  Biomimetic Dendrite‐Free Multivalent Metal Batteries , 2022, Advanced materials.

[17]  Cuiping Han,et al.  Anode Chemistry in Calcium Ion Batteries: A Review , 2022, Energy Storage Materials.

[18]  Xiaoqi Sun,et al.  An Anti-Aromatic Covalent Organic Framework Cathode with Dual-Redox Centers for Rechargeable Aqueous Zinc Batteries. , 2022, ACS applied materials & interfaces.

[19]  Xian‐Xiang Zeng,et al.  Electrolytes for Multivalent Metal-Ion Batteries: Current Status and Future Prospect. , 2022, ChemSusChem.

[20]  Xiaosi Zhou,et al.  Core-Shell-Structured Carbon Nanotube@VS4 Nanonecklaces as a High-Performance Cathode Material for Magnesium-Ion Batteries. , 2022, The journal of physical chemistry letters.

[21]  Weiwei Huang,et al.  Recent progress on organic electrode materials for multivalent (Zn, Al, Mg, Ca) secondary batteries , 2022, Batteries & Supercaps.

[22]  Chengliang Wang,et al.  Challenges and Perspectives of Organic Multivalent Metal‐Ion Batteries , 2022, Advanced materials.

[23]  Jia Xie,et al.  A Stable Covalent Organic Framework Cathode Enables Ultra-Long Cycle Life for Alkali and Multivalent Metal Rechargeable Batteries , 2022, Energy Storage Materials.

[24]  Jun Chen,et al.  Orthoquinone - Based Covalent Organic Frameworks with Ordered Channel Structures for Ultrahigh Performance Aqueous Zinc-Organic Battery. , 2022, Angewandte Chemie.

[25]  Seung‐Tae Hong,et al.  Crystal-Water-Free Potassium Vanadium Bronze (K0.5V2O5) as a Cathode Material for Ca-Ion Batteries , 2021, ACS Applied Energy Materials.

[26]  Yong Lu,et al.  Structure-Performance Relationships of Covalent Organic Framework Electrode Materials in Metal-Ion Batteries. , 2021, The journal of physical chemistry letters.

[27]  V. Kale,et al.  Molecular Engineering of Covalent Organic Framework Cathodes for Enhanced Zinc‐Ion Batteries , 2021, Advanced materials.

[28]  Muhammad M. Rahman,et al.  Covalent Organic Frameworks for Batteries , 2021, Advanced Functional Materials.

[29]  T. Prodromakis,et al.  Review—Progress in Electrolytes for Rechargeable Aluminium Batteries , 2021 .

[30]  Pei Dong,et al.  High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode , 2021 .

[31]  C. Ashworth Overcoming the COF trilemma , 2021, Nature Reviews Chemistry.

[32]  Qichun Zhang,et al.  Poly(2,5‐Dihydroxy‐1,4‐Benzoquinonyl Sulfide) As an Efficient Cathode for High‐Performance Aqueous Zinc–Organic Batteries , 2021, Advanced Functional Materials.

[33]  D. Brett,et al.  Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities , 2021, Advanced Functional Materials.

[34]  Zhiqiang Niu,et al.  Non-Metal Ion Co-Insertion Chemistry in Aqueous Zn/MnO2 Batteries. , 2021, Angewandte Chemie.

[35]  G. Ceder,et al.  Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization. , 2020, Chemical reviews.

[36]  Bifa Ji,et al.  Recent Advances and Perspectives on Calcium‐Ion Storage: Key Materials and Devices , 2020, Advanced materials.

[37]  F. Pan,et al.  Structure and Properties of Prussian Blue Analogues in Energy Storage and Conversion Applications , 2020, Advanced Functional Materials.

[38]  Yong Wang,et al.  Covalent Organic Frameworks for Next‐Generation Batteries , 2020 .

[39]  M. Srinivasan,et al.  Emerging rechargeable aqueous aluminum ion battery: Status, challenges, and outlooks , 2020 .

[40]  G. Cui,et al.  An irreversible electrolyte anion-doping strategy toward a superior aqueous Zn-organic battery , 2020 .

[41]  D. Aurbach,et al.  Current status and future directions of multivalent metal-ion batteries , 2020, Nature Energy.

[42]  G. Cui,et al.  Hydrated Eutectic Electrolytes with Ligand-Oriented Solvation Shells for Long-Cycling Zinc-Organic Batteries , 2020 .

[43]  K. Kang,et al.  Redox‐Active Organic Compounds for Future Sustainable Energy Storage System , 2020, Advanced Energy Materials.

[44]  Rong Jin,et al.  Two-dimensional Covalent Organic Frameworks with Enhanced Aluminum Storage Properties. , 2020, ChemSusChem.

[45]  Xiao Ji,et al.  A Covalent Organic Framework for Fast-Charge and Durable Rechargeable Mg Storage. , 2020, Nano letters.

[46]  Qichun Zhang,et al.  Covalent–Organic Frameworks: Advanced Organic Electrode Materials for Rechargeable Batteries , 2020, Advanced Energy Materials.

[47]  Yong Lu,et al.  Prospects of organic electrode materials for practical lithium batteries , 2020, Nature Reviews Chemistry.

[48]  L. Archer,et al.  Designing solid-state electrolytes for safe, energy-dense batteries , 2020, Nature Reviews Materials.

[49]  Yong Ding,et al.  Proton Inserted Manganese Dioxides as a Reversible Cathode for Aqueous Zn-Ion Batteries , 2020 .

[50]  Chao Luo,et al.  Organic Electrode Materials for Metal Ion Batteries. , 2020, ACS applied materials & interfaces.

[51]  M. R. Palacín,et al.  Achievements, Challenges, and Prospects of Calcium Batteries. , 2019, Chemical reviews.

[52]  Juan Li,et al.  The Rechargeable Aluminum Battery: Opportunities and Challenges. , 2019, Angewandte Chemie.

[53]  P. He,et al.  A Dual-Ion Organic Symmetric Battery Constructed from Phenazine-Based Artificial Bipolar Molecules. , 2019, Angewandte Chemie.

[54]  M. R. Palacín,et al.  Multivalent rechargeable batteries , 2019, Energy Storage Materials.

[55]  H. Fan,et al.  Intercalation Pseudocapacitive Behavior Powers Aqueous Batteries , 2019, Chem.

[56]  R. Marcilla,et al.  Polymers Bearing Catechol Pendants as Universal Hosts for Aqueous Rechargeable H+, Li-Ion, and Post-Li-ion (Mono-, Di-, and Trivalent) Batteries , 2019, ACS Applied Energy Materials.

[57]  Peng Zhang,et al.  Unlocking Simultaneously the Temperature and Electrochemical Windows of Aqueous Phthalocyanine Electrolytes , 2019, ACS Applied Energy Materials.

[58]  J. Xie,et al.  Recent Progress in Multivalent Metal (Mg, Zn, Ca, and Al) and Metal-Ion Rechargeable Batteries with Organic Materials as Promising Electrodes. , 2019, Small.

[59]  Jun Lu,et al.  30 Years of Lithium‐Ion Batteries , 2018, Advanced materials.

[60]  Yi Cui,et al.  High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate , 2017 .

[61]  J. Muldoon,et al.  Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. , 2014, Chemical reviews.

[62]  Yinghua Jin,et al.  Recent advances in dynamic covalent chemistry. , 2013, Chemical Society reviews.

[63]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[64]  Hong Gui,et al.  Covalent organic framework cathodes for rechargeable Mg batteries , 2023, Materials letters (General ed.).