Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus.

Methicillin resistance in Staphylococcus aureus depends on the production of mecA, which encodes penicillin-binding protein 2A (PBP2A), an acquired peptidoglycan transpeptidase (TP) with reduced susceptibility to β-lactam antibiotics. PBP2A cross-links nascent peptidoglycan when the native TPs are inhibited by β-lactams. Although mecA expression is essential for β-lactam resistance, it is not sufficient. Here we show that blocking the expression of wall teichoic acids (WTAs) by inhibiting the first enzyme in the pathway, TarO, sensitizes methicillin-resistant S. aureus (MRSA) strains to β-lactams even though the β-lactam-resistant transpeptidase, PBP2A, is still expressed. The dramatic synergy between TarO inhibitors and β-lactams is noteworthy not simply because strategies to overcome MRSA are desperately needed but because neither TarO nor the activities of the native TPs are essential in MRSA strains. The "synthetic lethality" of inhibiting TarO and the native TPs suggests a functional connection between ongoing WTA expression and peptidoglycan assembly in S. aureus. Indeed, transmission electron microscopy shows that S. aureus cells blocked in WTA synthesis have extensive defects in septation and cell separation, indicating dysregulated cell wall assembly and degradation. Our studies imply that WTAs play a fundamental role in S. aureus cell division and raise the possibility that synthetic lethal compound combinations may have therapeutic utility for overcoming antibiotic-resistant bacterial infections.

[1]  S. Foster,et al.  Peptidoglycan architecture can specify division planes in Staphylococcus aureus. , 2010, Nature communications.

[2]  Remy Chait,et al.  Optimal Drug Synergy in Antimicrobial Treatments , 2010, PLoS Comput. Biol..

[3]  J. Hinds,et al.  Insertion of Epicatechin Gallate into the Cytoplasmic Membrane of Methicillin-resistant Staphylococcus aureus Disrupts Penicillin-binding Protein (PBP) 2a-mediated β-Lactam Resistance by Delocalizing PBP2 , 2010, The Journal of Biological Chemistry.

[4]  Carl J. Balibar,et al.  cwrA, a gene that specifically responds to cell wall damage in Staphylococcus aureus. , 2010, Microbiology.

[5]  T. Kohler,et al.  The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. , 2010, International journal of medical microbiology : IJMM.

[6]  H. Sahl,et al.  An oldie but a goodie - cell wall biosynthesis as antibiotic target pathway. , 2010, International journal of medical microbiology : IJMM.

[7]  H. Schwarz,et al.  Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl , 2010, Molecular microbiology.

[8]  Jennifer Campbell,et al.  Wall Teichoic Acid Function, Biosynthesis, and Inhibition , 2009, Chembiochem : a European journal of chemical biology.

[9]  R. Kishony,et al.  Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. , 2009, ACS chemical biology.

[10]  M. Yaffe,et al.  Exploiting synthetic lethal interactions for targeted cancer therapy , 2009, Cell cycle.

[11]  Terry Roemer,et al.  Chemical genetic identification of peptidoglycan inhibitors potentiating carbapenem activity against methicillin-resistant Staphylococcus aureus. , 2009, Chemistry & biology.

[12]  S. Mobashery,et al.  Molecular Basis and Phenotype of Methicillin Resistance in Staphylococcus aureus and Insights into New β-Lactams That Meet the Challenge , 2009, Antimicrobial Agents and Chemotherapy.

[13]  C. Weidenmaier,et al.  Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions , 2008, Nature Reviews Microbiology.

[14]  Timothy C. Meredith,et al.  Late-Stage Polyribitol Phosphate Wall Teichoic Acid Biosynthesis in Staphylococcus aureus , 2008, Journal of bacteriology.

[15]  S. Walker,et al.  A revised pathway proposed for Staphylococcus aureus wall teichoic acid biosynthesis based on in vitro reconstitution of the intracellular steps. , 2008, Chemistry & biology.

[16]  J. Errington,et al.  Localization and Interactions of Teichoic Acid Synthetic Enzymes in Bacillus subtilis , 2007, Journal of bacteriology.

[17]  B. Tsvetanova,et al.  Biosynthesis of the Tunicamycins: A Review , 2007, The Journal of Antibiotics.

[18]  T. Beveridge,et al.  Cryo‐electron microscopy of cell division in Staphylococcus aureus reveals a mid‐zone between nascent cross walls , 2007, Molecular microbiology.

[19]  O. Schneewind,et al.  Cross-Linked Peptidoglycan Mediates Lysostaphin Binding to the Cell Wall Envelope of Staphylococcus aureus , 2006, Journal of bacteriology.

[20]  A. Tomasz,et al.  Overexpression of Genes of the Cell Wall Stimulon in Clinical Isolates of Staphylococcus aureus Exhibiting Vancomycin-Intermediate- S. aureus-Type Resistance to Vancomycin , 2006, Journal of bacteriology.

[21]  R. Jayaswal,et al.  The Cell Wall Stress Stimulon of Staphylococcus aureus and Other Gram- Positive Bacteria , 2005 .

[22]  K. Dietz,et al.  Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. , 2005, The Journal of infectious diseases.

[23]  D. Snydman,et al.  Daptomycin-resistant, methicillin-resistant Staphylococcus aureus bacteremia. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[24]  A. Wyke,et al.  Synthesis of peptidoglycan in vivo in methicillin-resistant Staphylococcus aureus. , 2005, European journal of biochemistry.

[25]  J. Errington,et al.  Recruitment of penicillin‐binding protein PBP2 to the division site of Staphylococcus aureus is dependent on its transpeptidation substrates , 2004, Molecular microbiology.

[26]  B. Neumeister,et al.  Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections , 2004, Nature Medicine.

[27]  Francis C. Neuhaus,et al.  A Continuum of Anionic Charge: Structures and Functions of d-Alanyl-Teichoic Acids in Gram-Positive Bacteria , 2003, Microbiology and Molecular Biology Reviews.

[28]  V. Singh,et al.  Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon. , 2003, Microbiology.

[29]  H. Mori,et al.  Two‐component system VraSR positively modulates the regulation of cell‐wall biosynthesis pathway in Staphylococcus aureus , 2003, Molecular microbiology.

[30]  C. Walsh Antibiotics: Actions, Origins, Resistance , 2003 .

[31]  D. Karamata,et al.  tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. , 2002, Microbiology.

[32]  B. Berger-Bächi,et al.  Factors influencing methicillin resistance in staphylococci , 2002, Archives of Microbiology.

[33]  A. Tomasz,et al.  An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Mary Jane Ferraro,et al.  Linezolid resistance in a clinical isolate of Staphylococcus aureus , 2001, The Lancet.

[35]  P. Giesbrecht,et al.  Staphylococcal Cell Wall: Morphogenesis and Fatal Variations in the Presence of Penicillin , 1998, Microbiology and Molecular Biology Reviews.

[36]  A. Tomasz,et al.  Suppression of beta-lactam antibiotic resistance in a methicillin-resistant Staphylococcus aureus through synergic action of early cell wall inhibitors and some other antibiotics. , 1997, The Journal of antimicrobial chemotherapy.

[37]  M. Sugai,et al.  An autolysin ring associated with cell separation of Staphylococcus aureus , 1996, Journal of bacteriology.

[38]  T. Yamaguchi,et al.  Cloning and characterization of a gene affecting the methicillin resistance level and the autolysis rate in Staphylococcus aureus , 1994, Journal of bacteriology.

[39]  A. Tomasz,et al.  Abnormal Peptidoglycan Produced in a Methicillin-Resistant Strain of Staphylococcus aureus Grown in the Presence of Methicillin: Functional Role for Penicillin-Binding Protein 2A in Cell Wall Synthesis , 1993, Antimicrobial Agents and Chemotherapy.

[40]  B. Berger-Bächi,et al.  Additional DNA in methicillin-resistant Staphylococcus aureus and molecular cloning of mec-specific DNA , 1986, Journal of bacteriology.

[41]  M. Qoronfleh,et al.  Effects of growth of methicillin-resistant and -susceptible Staphylococcus aureus in the presence of beta-lactams on peptidoglycan structure and susceptibility to lytic enzymes , 1986, Antimicrobial Agents and Chemotherapy.

[42]  A. Tomasz,et al.  Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus , 1984, Journal of bacteriology.

[43]  R. J. Watkinson,et al.  Shared lipid phosphate carrier in the biosynthesis of teichoic acid and peptidoglycan. , 1971, Nature: New biology.

[44]  J. G. Buchanan,et al.  The structure of the ribitol teichoic acid of Staphylococcus aureus H. , 1961, Biochimica et biophysica acta.

[45]  Atlanta,et al.  Invasive Methicillin-Resistant Staphylococcus aureus Infections in the United States , 2007 .

[46]  A. Tomasz,et al.  Ubiquitous presence of a mecA homologue in natural isolates of Staphylococcus sciuri. , 1996, Microbial drug resistance.