Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source

[1]  S. Chen,et al.  MeV-energy x rays from inverse compton scattering with laser-wakefield accelerated electrons. , 2013, Physical review letters.

[2]  Jun Zhang,et al.  Repetitive petawatt-class laser with near-diffraction-limited focal spot and transform-limited pulse duration , 2013, Photonics West - Lasers and Applications in Science and Engineering.

[3]  G. Potdevin,et al.  Monochromatic computed tomography with a compact laser-driven X-ray source , 2013, Scientific Reports.

[4]  G. Lambert,et al.  Femtosecond x rays from laser-plasma accelerators , 2013, 1301.5066.

[5]  Erik Lefebvre,et al.  Generation of tunable, 100–800 MeV quasi-monoenergetic electron beams from a laser-wakefield accelerator in the blowout regime , 2012 .

[6]  Y. Kitagawa,et al.  Head-On Inverse Compton Scattering X-rays with Energy beyond 10 keV from Laser-Accelerated Quasi-Monoenergetic Electron Bunches , 2012 .

[7]  Rajiv C. Shah,et al.  All-optical Compton gamma-ray source , 2012, Nature Photonics.

[8]  B. Shadwick,et al.  Spectral bandwidth reduction of Thomson scattered light by pulse chirping , 2012, 1204.1068.

[9]  Eric Esarey,et al.  Tunable laser plasma accelerator based on longitudinal density tailoring , 2011 .

[10]  Zhi‐zhan Xu,et al.  All-optical cascaded laser wakefield accelerator using ionization-induced injection. , 2011, Physical review letters.

[11]  A Pak,et al.  Demonstration of a narrow energy spread, ∼0.5  GeV electron beam from a two-stage laser wakefield accelerator. , 2011, Physical review letters.

[12]  S. M. Wiggins,et al.  Low emittance, high brilliance relativistic electron beams from a laser-plasma accelerator. , 2010, Physical review letters.

[13]  S. G. Anderson,et al.  Characterization and applications of a tunable, laser-based, MeV-class Compton-scattering γ -ray source , 2010 .

[14]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[15]  P. G. Thirolf,et al.  Vision of nuclear physics with photo-nuclear reactions by laser-driven $\sf \gamma$ beams , 2009 .

[16]  M Galimberti,et al.  Intense gamma-ray source in the giant-dipole-resonance range driven by 10-TW laser pulses. , 2008, Physical review letters.

[17]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[18]  H Schwoerer,et al.  Thomson-backscattered x rays from laser-accelerated electrons. , 2006, Physical review letters.

[19]  Antoine Rousse,et al.  Compton scattering x-ray sources driven by laser wakefield acceleration , 2005 .

[20]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[21]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[22]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[23]  R. Doll,et al.  Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  F. Carroll,et al.  Tunable monochromatic X rays: a new paradigm in medicine. , 2002, AJR. American journal of roentgenology.

[25]  Eric Esarey,et al.  Femtosecond x-rays from Thomson scattering using laser wakefield accelerators , 2001 .

[26]  Esarey,et al.  Nonlinear Thomson scattering of intense laser pulses from beams and plasmas. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[28]  P. A. Ross,et al.  A New Method of Spectroscopy for Faint X-Radiations , 1928 .

[29]  J A Seibert,et al.  A Figure of Merit Comparison between Bremsstrahlung and Monoenergetic X-Ray Sources for Angiography. , 1994, Journal of X-ray science and technology.