Development of Ultraslow, Monochromatic, and Mass-selected Ion Source Toward Measurement of Hydrogen Ion Permeability of Graphene

[1]  Thomas F. Miller,et al.  Imaging covalent bond formation by H atom scattering from graphene , 2019, Science.

[2]  J. Robinson,et al.  Nitrogen-Doped Graphene and Twisted Bilayer Graphene via Hyperthermal Ion Implantation with Depth Control. , 2016, ACS nano.

[3]  A. N. Grigorenko,et al.  Sieving hydrogen isotopes through two-dimensional crystals , 2015, Science.

[4]  S. Thakur,et al.  Doping of Graphene by Low-Energy Ion Beam Implantation: Structural, Electronic, and Transport Properties. , 2015, Nano letters.

[5]  Tomo-o Terasawa,et al.  Radiation-mode optical microscopy on the growth of graphene , 2015, Nature Communications.

[6]  A. V. van Duin,et al.  Aqueous proton transfer across single-layer graphene , 2014, Nature Communications.

[7]  I. Grigorieva,et al.  Proton transport through one-atom-thick crystals , 2014, Nature.

[8]  V. Berry Impermeability of graphene and its applications , 2013 .

[9]  Q. Ramasse,et al.  Ion implantation of graphene-toward IC compatible technologies. , 2013, Nano letters.

[10]  Thomas Graf,et al.  The size of the proton , 2010, Nature.

[11]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[12]  R. Cooks,et al.  Collisions of ions with surfaces at chemically relevant energies: Instrumentation and phenomena , 2001 .

[13]  R. Cooks,et al.  Hybrid BEEQ tandem mass spectrometer for the study of ion/surface collision processes , 1992 .

[14]  W. Aberth,et al.  The Wien filter and its application in chemistry , 1990 .

[15]  C. T. Kirk,et al.  Work function changes due to the chemisorption of water and oxygen on aluminum , 1966 .