Genetic Programming Theory and Practice XI

Genetic Programming Theory and Practice VI was developed from the sixth workshop at the University of Michigans Center for the Study of Complex Systems to facilitate the exchange of ideas and information related to the rapidly advancing field of Genetic Programming (GP). Contributions from the foremost international researchers and practitioners in the GP arena examine the similarities and differences between theoretical and empirical results on real-world problems. The text explores the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application. These contributions address several significant interdependent themes which emerged from this years workshop, including: (1) Making efficient and effective use of test data. (2) Sustaining the long-term evolvability of our GP systems. (3) Exploiting discovered subsolutions for reuse. (4) Increasing the role of a Domain Expert.

[1]  Brooke L. Fridley,et al.  Meta-Dimensional Analysis of Phenotypes Using the Analysis Tool for Heritable and Environmental Network Associations (ATHENA): Challenges with Building Large Networks , 2013 .

[2]  Riccardo Poli,et al.  On the Search Properties of Different Crossover Operators in Genetic Programming , 2001 .

[3]  Eugene Semenkin,et al.  Self-configuring genetic programming algorithm with modified uniform crossover , 2012, 2012 IEEE Congress on Evolutionary Computation.

[4]  Nguyen Xuan Hoai,et al.  BASED MUTATION IN GENETIC PROGRAMMING : THE CASE FOR REAL-VALUED SYMBOLIC REGRESSION , 2009 .

[5]  John R. Koza,et al.  Genetic generation of both the weights and architecture for a neural network , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[6]  L. Altenberg The evolution of evolvability in genetic programming , 1994 .

[7]  Wolfgang Banzhaf,et al.  More on Computational Effort Statistics for Genetic Programming , 2003, EuroGP.

[8]  N. Hopper,et al.  Analysis of genetic diversity through population history , 1999 .

[9]  Laurie J. Heyer,et al.  Bacterial Hash Function Using DNA-Based XOR Logic Reveals Unexpected Behavior of the LuxR Promoter , 2011 .

[10]  Riccardo Poli,et al.  Solving High-Order Boolean Parity Problems with Smooth Uniform Crossover, Sub-Machine Code GP and Demes , 2000, Genetic Programming and Evolvable Machines.

[11]  Lee Spector,et al.  Assessment of problem modality by differential performance of lexicase selection in genetic programming: a preliminary report , 2012, GECCO '12.

[12]  Leonardo Vanneschi,et al.  State-of-the-Art Genetic Programming for Predicting Human Oral Bioavailability of Drugs , 2010, IWPACBB.

[13]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[14]  Leonardo Vanneschi,et al.  Genetic programming needs better benchmarks , 2012, GECCO '12.

[15]  E. Vladislavleva Model-based problem solving through symbolic regression via pareto genetic programming , 2008 .

[16]  Colin G. Johnson,et al.  Semantically driven mutation in genetic programming , 2009, 2009 IEEE Congress on Evolutionary Computation.

[17]  Arthur K. Kordon,et al.  Variable Selection in Industrial Datasets Using Pareto Genetic Programming , 2006 .

[18]  Mark Kotanchek,et al.  Symbolic Regression Is Not Enough: It Takes a Village to Raise a Model , 2013 .

[19]  Jason H. Moore,et al.  Genetic Programming Theory and Practice X , 2013, Genetic and Evolutionary Computation.

[20]  Justinian P. Rosca Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications , 1995 .

[21]  Lee Spector,et al.  Size Control Via Size Fair Genetic Operators In The PushGP Genetic Programming System , 2002, GECCO.

[22]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[23]  Alan Pankratz,et al.  Forecasting with Dynamic Regression Models: Pankratz/Forecasting , 1991 .

[24]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[25]  Arthur K. Kordon Hybrid intelligent systems for industrial data analysis , 2004, Int. J. Intell. Syst..

[26]  J. L. Porket Unemployment: macroeconomic performance and the labour market , 1992 .

[27]  Riccardo Poli,et al.  A Simple but Theoretically-Motivated Method to Control Bloat in Genetic Programming , 2003, EuroGP.

[28]  Lee Spector,et al.  Evolving a digital multiplier with the pushgp genetic programming system , 2013, GECCO.

[29]  Randall K. McRee,et al.  Symbolic regression using nearest neighbor indexing , 2010, GECCO '10.

[30]  Paulien Hogeweg,et al.  Evolutionary Consequences of Coevolving Targets , 1997, Evolutionary Computation.

[31]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[32]  Marylyn D. Ritchie,et al.  Generating Linkage Disequilibrium Patterns in Data Simulations Using genomeSIMLA , 2008, EvoBIO.

[33]  A. Brabazon,et al.  An Introduction to Evolutionary Computation in Finance , 2008, IEEE Computational Intelligence Magazine.

[34]  Terry Van Belle,et al.  Uniform Subtree Mutation , 2002, EuroGP.

[35]  Stephan M. Winkler,et al.  Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications , 2009 .

[36]  Riccardo Poli,et al.  Foundations of Genetic Programming , 1999, Springer Berlin Heidelberg.

[37]  Graham Kendall,et al.  Diversity in genetic programming: an analysis of measures and correlation with fitness , 2004, IEEE Transactions on Evolutionary Computation.

[38]  Steven C. Wheelwright,et al.  Forecasting methods and applications. , 1979 .

[39]  C. Giraud-Carrier,et al.  A depth controlling strategy for Strongly Typed Evolutionary Programming , 1999 .

[40]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[41]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[42]  Ferdinando Targetti Nicholas Kaldor: The Economics and Politics of Capitalism as a Dynamic System , 1992 .

[43]  Maarten Keijzer,et al.  The Push3 execution stack and the evolution of control , 2005, GECCO '05.

[44]  Jessica A. Turner,et al.  Behavioral Interpretations of Intrinsic Connectivity Networks , 2011, Journal of Cognitive Neuroscience.

[45]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[46]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[47]  Lee Spector,et al.  Genetic Programming and Autoconstructive Evolution with the Push Programming Language , 2002, Genetic Programming and Evolvable Machines.

[48]  William Nickell,et al.  The CEP-OECD institutions data set (1960-2004) , 2006 .

[49]  Greg Gibson,et al.  Extensive Sex-Specific Nonadditivity of Gene Expression in Drosophila melanogaster , 2004, Genetics.

[50]  Leonardo Vanneschi,et al.  Open issues in genetic programming , 2010, Genetic Programming and Evolvable Machines.

[51]  Renáta Dubcáková,et al.  Eureqa: software review , 2011, Genetic Programming and Evolvable Machines.

[52]  Vladimir Privman,et al.  Realization and properties of biochemical-computing biocatalytic XOR gate based on signal change. , 2010, The journal of physical chemistry. B.

[53]  Kalyan Veeramachaneni,et al.  Flex-GP: Genetic Programming on the Cloud , 2012, EvoApplications.

[54]  Leonardo Vanneschi,et al.  Operator equalisation, bloat and overfitting: a study on human oral bioavailability prediction , 2009, GECCO.

[55]  Giancarlo Mauri,et al.  Using Subtree Crossover Distance to Investigate Genetic Programming Dynamics , 2006, EuroGP.

[56]  Leonardo Vanneschi,et al.  Genetic programming for computational pharmacokinetics in drug discovery and development , 2007, Genetic Programming and Evolvable Machines.

[57]  John R. Koza,et al.  Human-competitive results produced by genetic programming , 2010, Genetic Programming and Evolvable Machines.

[58]  Krzysztof Krawiec,et al.  Geometric Semantic Genetic Programming , 2012, PPSN.

[59]  Michael O'Neill,et al.  Grammatical evolution - evolutionary automatic programming in an arbitrary language , 2003, Genetic programming.

[60]  Michèle Sebag,et al.  Evolutionary identification of macro-mechanical models , 1996 .

[61]  Michael O'Neill,et al.  The Role of Syntactic and Semantic Locality of Crossover in Genetic Programming , 2010, PPSN.

[62]  Colin G. Johnson,et al.  Semantically driven crossover in genetic programming , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[63]  Riccardo Poli,et al.  Smooth Uniform Crossover with Smooth Point Mutation in Genetic Programming: A Preliminary Study , 1999, EuroGP.

[64]  Hitoshi Iba,et al.  Regularization approach to inductive genetic programming , 2001, IEEE Trans. Evol. Comput..

[65]  Marylyn D. Ritchie,et al.  Grammatical Evolution of Neural Networks for Discovering Epistasis among Quantitative Trait Loci , 2010, EvoBIO.

[66]  Michael O'Neill,et al.  Semantic Aware Crossover for Genetic Programming: The Case for Real-Valued Function Regression , 2009, EuroGP.

[67]  Sean Luke,et al.  Is The Perfect The Enemy Of The Good? , 2002, GECCO.

[68]  Marylyn D. Ritchie,et al.  GPNN: Power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease , 2006 .

[69]  Trent McConaghy,et al.  FFX: Fast, Scalable, Deterministic Symbolic Regression Technology , 2011 .

[70]  Stephan M. Winkler,et al.  Evolutionary System Identification , 2009 .

[71]  Michael P. Clements,et al.  Forecasting economic and financial time-series with non-linear models , 2004 .

[72]  Russell A. Poldrack,et al.  Handbook of Functional MRI Data Analysis: Modeling brain connectivity , 2011 .

[73]  Michael O'Neill,et al.  Genetic Programming and Evolvable Machines Manuscript No. Semantically-based Crossover in Genetic Programming: Application to Real-valued Symbolic Regression , 2022 .

[74]  Nikhil R. Pal,et al.  Genetic programming for simultaneous feature selection and classifier design , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[75]  Krzysztof Krawiec,et al.  Medial Crossovers for Genetic Programming , 2012, EuroGP.

[76]  Wojciech Jaskowski,et al.  Better GP benchmarks: community survey results and proposals , 2012, Genetic Programming and Evolvable Machines.

[77]  Jian Gu,et al.  HSD3B and Gene-Gene Interactions in a Pathway-Based Analysis of Genetic Susceptibility to Bladder Cancer , 2012, PloS one.

[78]  Nicholas Freitag McPhee,et al.  Semantic Building Blocks in Genetic Programming , 2008, EuroGP.

[79]  Guoqiang Peter Zhang,et al.  Time series forecasting using a hybrid ARIMA and neural network model , 2003, Neurocomputing.

[80]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[81]  Witold Jacak,et al.  Analysis of Selected Evolutionary Algorithms in Feature Selection and Parameter Optimization for Data Based Tumor Marker Modeling , 2011, EUROCAST.

[82]  Lee Spector,et al.  Autoconstructive Evolution: Push, PushGP, and Pushpop , 2001 .

[83]  Michael Affenzeller,et al.  Macro-economic Time Series Modeling and Interaction Networks , 2011, EvoApplications.

[84]  Leonardo Vanneschi,et al.  A Quantitative Study of Learning and Generalization in Genetic Programming , 2011, EuroGP.

[85]  Marylyn D Ritchie,et al.  Comparison of approaches for machine‐learning optimization of neural networks for detecting gene‐gene interactions in genetic epidemiology , 2008, Genetic epidemiology.

[86]  Mark Kotanchek,et al.  Trustable symbolic regression models: using ensembles, interval arithmetic and pareto fronts to develop robust and trust-aware models , 2008 .

[87]  Michael Affenzeller,et al.  SASEGASA: A New Generic Parallel Evolutionary Algorithm for Achieving Highest Quality Results , 2004, J. Heuristics.

[88]  Ryszard S. Michalski,et al.  LEARNABLE EVOLUTION MODEL: Evolutionary Processes Guided by Machine Learning , 2004, Machine Learning.

[89]  Dirk P. Kroese,et al.  Statistical Learning , 2001, Science.

[90]  Arthur K. Kordon,et al.  Genetic Programming Transforms in Linear Regression Situations , 2011 .