Parallel multi-wavelength calibration algorithm for radio astronomical arrays

In order to meet the theoretically achievable imaging performance, calibration of modern radio interferometers is a mandatory challenge, especially at low frequencies. In this perspective, we propose a novel parallel iterative multi-wavelength calibration algorithm. The proposed algorithm estimates the apparent directions of the calibration sources, the direction dependent and direction independent complex gains of the array elements and their noise powers. Furthermore, the algorithm takes into account the specific variation of the aforementioned parameter values across wavelength. Numerical simulations reveal that the proposed scheme outperforms the mono-wavelength calibration scheme and approaches the derived constrained Cramer–Rao bound even with the presence of non-calibration sources at unknown directions. Finally, simulation results on LOFAR real data assess the usefulness of the proposed scheme.

[1]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 1986 .

[2]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[3]  T. L. Grobler,et al.  Calibration artefacts in radio interferometry – III. Phase-only calibration and primary beam correction , 2016, 1606.06320.

[4]  S. Tol Bayesian estimation for ionospheric calibration in radio astronomy , 2009 .

[6]  J. Anderson,et al.  LOFAR sparse image reconstruction , 2014, 1406.7242.

[7]  Pascal Larzabal,et al.  Robust Calibration of Radio Interferometers in Non-Gaussian Environment , 2016, IEEE Transactions on Signal Processing.

[8]  Pascal Larzabal,et al.  Relaxed concentrated MLE for robust calibration of radio interferometers , 2016, 2016 24th European Signal Processing Conference (EUSIPCO).

[9]  Stefan J. Wijnholds,et al.  Blind calibration of phased arrays using sparsity constraints on the signal model , 2016, 2016 24th European Signal Processing Conference (EUSIPCO).

[10]  A. Cohen,et al.  PROBING FINE-SCALE IONOSPHERIC STRUCTURE WITH THE VERY LARGE ARRAY RADIO TELESCOPE , 2009, 0905.4501.

[11]  Albert-Jan Boonstra,et al.  Gain calibration methods for radio telescope arrays , 2003, IEEE Trans. Signal Process..

[12]  Alle-Jan van der Veen,et al.  Self-Calibration for the LOFAR Radio Astronomical Array , 2007, IEEE Transactions on Signal Processing.

[13]  Björn E. Ottersten,et al.  Spatial signature estimation for uniform linear arrays with unknown receiver gains and phases , 1999, IEEE Trans. Signal Process..

[14]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[15]  vZeljko Ivezi'c,et al.  A UNIFIED CATALOG OF RADIO OBJECTS DETECTED BY NVSS, FIRST, WENSS, GB6, AND SDSS , 2008, 0806.0650.

[16]  Namir E. Kassim,et al.  Beyond the isoplanatic patch in the VLA Low-frequency Sky Survey , 2004, SPIE Astronomical Telescopes + Instrumentation.

[17]  Alle-Jan van der Veen,et al.  Calibration challenges for future radio telescopes , 2010, IEEE Signal Processing Magazine.

[18]  Esa Ollila,et al.  Multichannel sparse recovery of complex-valued signals using Huber's criterion , 2015, 2015 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa).

[19]  Igal Bilik,et al.  Spatial Compressive Sensing for Direction-of-Arrival Estimation With Bias Mitigation Via Expected Likelihood , 2013, IEEE Transactions on Signal Processing.

[20]  Pascal Larzabal,et al.  Calibration of radio interferometers using a sparse DoA estimation framework , 2016, 2016 24th European Signal Processing Conference (EUSIPCO).

[21]  Qing Ling,et al.  A Proximal Gradient Algorithm for Decentralized Composite Optimization , 2015, IEEE Transactions on Signal Processing.

[22]  Alle-Jan van der Veen,et al.  Application of Krylov based methods in calibration for radio astronomy , 2014, 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[23]  Richard T. Schilizzi,et al.  The Square Kilometre Array , 2009, Proceedings of the IEEE.

[24]  P. Vandergheynst,et al.  Compressed sensing imaging techniques for radio interferometry , 2008, 0812.4933.

[25]  C. De Breuck,et al.  A new search for distant radio galaxies in the Southern hemisphere - III. Optical spectroscopy and analysis of the MRCR-SUMSS sample , 2009, 0902.1341.

[26]  S. Markoff,et al.  LOFAR - low frequency array , 2006 .

[27]  T. L. Grobler,et al.  Calibration artefacts in radio interferometry – I. Ghost sources in Westerbork Synthesis Radio Telescope data , 2014 .

[28]  João M. F. Xavier,et al.  D-ADMM: A Communication-Efficient Distributed Algorithm for Separable Optimization , 2012, IEEE Transactions on Signal Processing.

[29]  Alle-Jan van der Veen,et al.  Signal Processing Tools for Radio Astronomy , 2013, Handbook of Signal Processing Systems.

[30]  Thomas L. Marzetta,et al.  A simple derivation of the constrained multiple parameter Cramer-Rao bound , 1993, IEEE Trans. Signal Process..

[31]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[32]  Florian Roemer,et al.  Subspace Methods and Exploitation of Special Array Structures , 2014 .

[33]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[34]  Feng Li,et al.  The application of compressive sampling to radio astronomy I: Deconvolution , 2011, 1106.1711.

[35]  Yonina C. Eldar,et al.  Distributed sparse signal recovery for sensor networks , 2012, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[36]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[37]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[38]  Yonina C. Eldar,et al.  Distributed Compressed Sensing for Static and Time-Varying Networks , 2013, IEEE Transactions on Signal Processing.

[39]  Roger J. Cappallo,et al.  Real-Time Calibration of the Murchison Widefield Array , 2008, IEEE Journal of Selected Topics in Signal Processing.

[40]  A. van der Veen,et al.  Ionospheric Calibration for the LOFAR Radio Telescope , 2007, 2007 International Symposium on Signals, Circuits and Systems.

[41]  Paul Hurley,et al.  Blind calibration for radio interferometry using convex optimization , 2015, 2015 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa).

[42]  G. Wang,et al.  Alternating Direction Method of Multipliers for Separable Convex Optimization of Real Functions in Complex Variables , 2015 .

[43]  J. D. McEwen,et al.  Compressed sensing for wide-field radio interferometric imaging , 2010, 1010.3658.

[44]  Qing Ling,et al.  DOA Estimation Using a Greedy Block Coordinate Descent Algorithm , 2012, IEEE Transactions on Signal Processing.

[45]  Jacob Dirk Bregman System design and wide-field imaging aspects of synthesis arrays with phased array stations: to the next generation of SKA system designers , 2012 .

[46]  Björn E. Ottersten,et al.  Covariance Matching Estimation Techniques for Array Signal Processing Applications , 1998, Digit. Signal Process..

[47]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..

[48]  David Mary,et al.  Distributed image reconstruction for very large arrays in radio astronomy , 2014, 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[49]  Yonina C. Eldar,et al.  Modified distributed iterative hard thresholding , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[50]  Stefan J. Wijnholds,et al.  Calibration artefacts in radio interferometry – II. Ghost patterns for irregular arrays , 2016 .

[51]  Xiangfeng Wang,et al.  Multi-Agent Distributed Optimization via Inexact Consensus ADMM , 2014, IEEE Transactions on Signal Processing.

[52]  Sarod Yatawatta,et al.  Distributed Radio Interferometric Calibration , 2015, ArXiv.

[53]  Vladimir Pavlovic,et al.  Fast ADMM Algorithm for Distributed Optimization with Adaptive Penalty , 2015, AAAI.

[54]  Alle-Jan van der Veen,et al.  Radio-astronomical imaging in the presence of strong radio interference , 2000, IEEE Transactions on Information Theory.

[55]  A. Boonstra,et al.  Sky Noise Limited Snapshot Imaging in the Presence of RFI with Lofar’s Initial Test Station , 2004 .

[56]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[57]  H. E. Smith,et al.  THE REVISED 3C CATALOG OF RADIO SOURCES: A REVIEW OF OPTICAL IDENTIFICATIONS AND SPECTROSCOPY. , 1976 .

[58]  Asuman E. Ozdaglar,et al.  Distributed Alternating Direction Method of Multipliers , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[59]  Yves Wiaux,et al.  PURIFY: a new approach to radio-interferometric imaging , 2013, 1307.4370.

[60]  Alle-Jan van der Veen,et al.  Multisource Self-Calibration for Sensor Arrays , 2009, IEEE Transactions on Signal Processing.

[61]  Pascal Bianchi,et al.  Linear convergence rate for distributed optimization with the alternating direction method of multipliers , 2014, 53rd IEEE Conference on Decision and Control.

[62]  Rémi Gribonval,et al.  Convex Optimization Approaches for Blind Sensor Calibration Using Sparsity , 2013, IEEE Transactions on Signal Processing.

[63]  Alle-Jan van der Veen,et al.  Signal processing challenges for radio astronomical arrays , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[64]  Stefan J. Wijnholds,et al.  Fast gain calibration in radio astronomy using alternating direction implicit methods: Analysis and applications , 2014, 1410.2101.

[65]  Visa Koivunen,et al.  Robust iterative hard thresholding for compressed sensing , 2014, 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP).

[66]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[67]  C. Carilli,et al.  Synthesis Imaging in Radio Astronomy II , 1999 .

[68]  Mike E. Davies,et al.  Normalized Iterative Hard Thresholding: Guaranteed Stability and Performance , 2010, IEEE Journal of Selected Topics in Signal Processing.

[69]  S. Goldstein Radio Astronomy , 1957, Nature.

[70]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[71]  Marius Pesavento,et al.  Direction finding and array calibration based on sparse reconstruction in partly calibrated arrays , 2014, 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[72]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[73]  Tomaso Erseghe,et al.  A Distributed and Scalable Processing Method Based Upon ADMM , 2012, IEEE Signal Processing Letters.

[74]  C. Tasse Nonlinear Kalman filters for calibration in radio interferometry , 2014, 1403.6308.

[75]  S. Wijnholds Fish-Eye Observing with Phased Array Radio Telescopes , 2010 .