Analysis of Present Day and Future OH and Methane Lifetime in the ACCMIP Simulations

Results from simulations performed for the At- mospheric Chemistry and Climate Modeling Intercompari- son Project (ACCMIP) are analysed to examine how OH and methane lifetime may change from present day to the future, under different climate and emissions scenarios. Present day (2000) mean tropospheric chemical lifetime derived from the ACCMIP multi-model mean is 9.8± 1.6 yr (9.3± 0.9 yr when only including selected models), lower than a recent

[1]  Volker Grewe,et al.  Origin and Variability of Upper Tropospheric Nitrogen Oxides and Ozone at Northern Mid-Latitudes , 2013 .

[2]  L. Horowitz,et al.  Impact of preindustrial to present‐day changes in short‐lived pollutant emissions on atmospheric composition and climate forcing , 2013 .

[3]  M. Chin,et al.  Radiative forcing in the ACCMIP historical and future climate simulations , 2013 .

[4]  J. Dufresne,et al.  Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100 , 2013, Climate Dynamics.

[5]  Arlene M. Fiore,et al.  Climate versus emission drivers of methane lifetime against loss by tropospheric OH from 1860-2100 , 2012 .

[6]  J. Lamarque,et al.  Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) , 2012 .

[7]  J. Lamarque,et al.  Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) , 2012 .

[8]  J. Lamarque,et al.  Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations , 2012 .

[9]  J. Lamarque,et al.  Observational constraints on ozone radiative forcing from the Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP) , 2012 .

[10]  J. Lamarque,et al.  The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics , 2012 .

[11]  J. Lamarque,et al.  Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) , 2012 .

[12]  Michael J. Prather,et al.  Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions , 2012 .

[13]  L. Horowitz,et al.  Climate versus emission drivers of methane lifetime from 1860-2100 , 2012 .

[14]  Michael J. Prather,et al.  Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry , 2012 .

[15]  J. Lamarque,et al.  CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model , 2012 .

[16]  G. Mann,et al.  Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters , 2011 .

[17]  C. Jones,et al.  Development and evaluation of an Earth-System model - HadGEM2 , 2011 .

[18]  T. Berntsen,et al.  Anthropogenic radiative forcing time series from pre-industrial times until 2010 , 2011 .

[19]  Veronika Eyring,et al.  Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing , 2011 .

[20]  S. Emori,et al.  MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments , 2011 .

[21]  P. J. Rasch,et al.  CAM-chem: description and evaluation of interactive atmospheric chemistry in CESM , 2011 .

[22]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[23]  G. P. Kyle,et al.  Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways , 2011 .

[24]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[25]  Luke D. Oman,et al.  The response of tropical tropospheric ozone to ENSO , 2011 .

[26]  Toru Nozawa,et al.  Future changes in tropospheric ozone under Representative Concentration Pathways (RCPs) , 2011 .

[27]  J. G. Levine,et al.  Impacts of HOx regeneration and recycling in the oxidation of isoprene: Consequences for the composition of past, present and future atmospheres , 2011 .

[28]  P. Jöckel,et al.  Small Interannual Variability of Global Atmospheric Hydroxyl , 2011, Science.

[29]  C. Klinger Quantitative evaluation of ozone and selected climate parameters in the chemistry-climate model EMAC , 2011 .

[30]  T. Takemura,et al.  Geoscientific Model Development MIROC-ESM 2010 : model description and basic results of CMIP 5-20 c 3 m experiments , 2011 .

[31]  Veronika Eyring,et al.  Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models , 2010 .

[32]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[33]  Ramaswamy,et al.  The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3 , 2011 .

[34]  W. Landman Climate change 2007: the physical science basis , 2010 .

[35]  John A. Pyle,et al.  Impact of stratospheric ozone recovery on tropospheric ozone and its budget , 2010 .

[36]  J. Pyle,et al.  How different would tropospheric oxidation be over an ice‐free Arctic? , 2009 .

[37]  Clouds, photolysis and regional tropospheric ozone budgets. , 2009 .

[38]  Nadine Unger,et al.  Improved Attribution of Climate Forcing to Emissions , 2009, Science.

[39]  M. Jacobson,et al.  Influence of future anthropogenic emissions on climate, natural emissions, and air quality , 2009 .

[40]  J. Pyle,et al.  Upgrading photolysis in the p-TOMCAT CTM: model evaluation and assessment of the role of clouds , 2008 .

[41]  Oliver Wild,et al.  How sensitive is tropospheric oxidation to anthropogenic emissions? , 2008 .

[42]  William J. Collins,et al.  Multimodel estimates of intercontinental source-receptor relationships for ozone pollution , 2008 .

[43]  David G. Streets,et al.  Effects of 2000–2050 global change on ozone air quality in the United States , 2008 .

[44]  J. Attie,et al.  A new tropospheric and stratospheric Chemistry and Transport Model MOCAGE-Climat for multi-year studies: evaluation of the present-day climatology and sensitivity to surface processes , 2007 .

[45]  Anthony D. Del Genio,et al.  Will moist convection be stronger in a warmer climate? , 2007 .

[46]  John A. Pyle,et al.  Impact of climate change on tropospheric ozone and its global budgets , 2007 .

[47]  Oliver Wild,et al.  Modelling the global tropospheric ozone budget: exploring the variability in current models , 2007 .

[48]  P. Forster,et al.  Impact of an improved shortwave radiation scheme in the MAECHAM5 General Circulation Model , 2007 .

[49]  I. Isaksen,et al.  CTM study of changes in tropospheric hydroxyl distribution 1990–2001 and its impact on methane , 2006 .

[50]  Mark Lawrence,et al.  The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere , 2006 .

[51]  Richard G. Derwent,et al.  Multimodel simulations of carbon monoxide: Comparison with observations and projected near‐future changes , 2006 .

[52]  Nadine Unger,et al.  Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI , 2006 .

[53]  Franz Rohrer,et al.  Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation , 2006, Nature.

[54]  Arlene M. Fiore,et al.  Impact of meteorology and emissions on methane trends, 1990–2004 , 2006 .

[55]  J. Lamarque,et al.  Multimodel ensemble simulations of present-day and near-future tropospheric ozone , 2006 .

[56]  G. Schmidt,et al.  Sulfur, sea salt, and radionuclide aerosols in GISS ModelE , 2006 .

[57]  P. Ciais,et al.  Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform , 2005 .

[58]  James E. Dye,et al.  Comments on the parameterization of lightning-produced NO in global chemistry-transport models , 2005 .

[59]  M. Manning,et al.  Short-term variations in the oxidizing power of the atmosphere , 2005, Nature.

[60]  Derek M. Cunnold,et al.  Evidence for variability of atmospheric hydroxyl radicals over the past quarter century , 2005 .

[61]  Wouter Peters,et al.  On the role of hydroxyl radicals in the self-cleansing capacity of the troposphere , 2004 .

[62]  Drew T. Shindell,et al.  Impacts of climate change on methane emissions from wetlands , 2004 .

[63]  Richard G. Derwent,et al.  Radiative forcing from aircraft NOx emissions: Mechanisms and seasonal dependence , 2004 .

[64]  Roger Atkinson,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reaxtions of Ox, HOx, NOx and SOx species , 2004 .

[65]  M. Lawrence,et al.  Strong sensitivity of the global mean OH concentration and the tropospheric oxidizing efficiency to the source of NOx from lightning , 2004 .

[66]  Philip Cameron-Smith,et al.  IMPACT, the LLNL 3‐D global atmospheric chemical transport model for the combined troposphere and stratosphere: Model description and analysis of ozone and other trace gases , 2004 .

[67]  B. Josse,et al.  Radon global simulations with the multiscale chemistry and transport model MOCAGE , 2004 .

[68]  J. Lelieveld,et al.  Interannual variability and trend of CH4 lifetime as a measure for OH changes in the 1979–1993 time period , 2003 .

[69]  Wouter Peters,et al.  Stability of tropospheric hydroxyl chemistry , 2002 .

[70]  D. Allen,et al.  Evaluation of lightning flash rate parameterizations for use in a global chemical transport model , 2002 .

[71]  K. Sudo,et al.  CHASER: A global chemical model of the troposphere 1. Model description , 2002 .

[72]  W. J. Morgan,et al.  Plume‐driven plumbing and crustal formation in Iceland , 2002 .

[73]  M. Prather,et al.  Fast-J2: Accurate Simulation of Stratospheric Photolysis in Global Chemical Models , 2002 .

[74]  Mark Lawrence,et al.  Interhemispheric di ff erences in the chemical characteristics of the Indian Ocean aerosol during INDOEX , 2002 .

[75]  D. Stevenson,et al.  Role of climate feedback on methane and ozone studied with a Coupled Ocean‐Atmosphere‐Chemistry Model , 2001 .

[76]  J. C. McConnell,et al.  Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model , 2000 .

[77]  O. Wild,et al.  Excitation of the primary tropospheric chemical mode in a global three-dimensional model , 2000 .

[78]  J. Edwards,et al.  Future estimates of tropospheric ozone radiative forcing and methane turnover — The impact of climate change , 2000 .

[79]  B. Hannegan,et al.  Stratospheric ozone in 3-D models : A simple chemistry and the cross-tropopause flux , 2000 .

[80]  Paul J. Crutzen,et al.  Impact of Non-Methane Hydrocarbons on Tropospheric Chemistry and the Oxidizing Power of the Global Troposphere: 3-Dimensional Modelling Results , 2000 .

[81]  Michael B. McElroy,et al.  Three-dimensional climatological distribution of tropospheric OH: Update and evaluation , 2000 .

[82]  D. Schimel,et al.  Atmospheric Chemistry and Greenhouse Gases , 1999 .

[83]  Yuhang Wang,et al.  Anthropogenic forcing on tropospheric ozone and OH since preindustrial times , 1998 .

[84]  R. Cicerone,et al.  Perturbation to global tropospheric oxidizing capacity due to latitudinal redistribution of surface sources of NOx, CH4 and CO , 1998 .

[85]  Paul J. Crutzen,et al.  Changing concentration, lifetime and climate forcing of atmospheric methane , 1998 .

[86]  Paul J. Crutzen,et al.  An efficient method for online calculations of photolysis and heating rates , 1998 .

[87]  J. Penner,et al.  NOx from lightning 1. Global distribution based on lightning physics , 1997 .

[88]  W. Demore Experimental and Estimated Rate Constants for the Reactions of Hydroxyl Radicals with Several Halocarbons , 1996 .

[89]  D. M. Cunnold,et al.  Atmospheric Trends and Lifetime of CH3CCI3 and Global OH Concentrations , 1995, Science.

[90]  D. Rind,et al.  Modeling Global Lightning Distributions in a General Circulation Model , 1994 .

[91]  John A. Pyle,et al.  Modeling trace gas budgets in the troposphere: 1. Ozone and odd nitrogen , 1993 .

[92]  D. Rind,et al.  What determines the cloud-to-ground lightning fraction in thunderstorms? , 1993 .

[93]  D. Rind,et al.  A simple lightning parameterization for calculating global lightning distributions , 1992 .

[94]  A. Thompson,et al.  The Oxidizing Capacity of the Earth's Atmosphere: Probable Past and Future Changes , 1992, Science.

[95]  S. Madronich Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds , 1987 .

[96]  S. Wofsy,et al.  Tropospheric chemistry: A global perspective , 1981 .

[97]  R. A. Cox,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III - gas phase reactions of inorganic halogens , 2006 .

[98]  H. Levy Normal Atmosphere: Large Radical and Formaldehyde Concentrations Predicted , 1971, Science.