A Model Reduction Method for Multiscale Elliptic Pdes with Random Coefficients Using an Optimization Approach

In this paper, we propose a model reduction method for solving multiscale elliptic PDEs with random coefficients in the multiquery setting using an optimization approach. The optimization approach enables us to construct a set of localized multiscale data-driven stochastic basis functions that give optimal approximation property of the solution operator. Our method consists of the offline and online stages. In the offline stage, we construct the localized multiscale data-driven stochastic basis functions by solving an optimization problem. In the online stage, using our basis functions, we can efficiently solve multiscale elliptic PDEs with random coefficients with relatively small computational costs. Therefore, our method is very efficient in solving target problems with many different force functions. The convergence analysis of the proposed method is also presented and has been verified by the numerical simulation.

[1]  Robert Lipton,et al.  Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..

[2]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[3]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[4]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[5]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[6]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[7]  Guang Lin,et al.  An adaptive ANOVA-based data-driven stochastic method for elliptic PDEs with random coefficient , 2014 .

[8]  S. Aachen Stochastic Differential Equations An Introduction With Applications , 2016 .

[9]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[10]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .

[11]  Shuangping Li,et al.  Computing Eigenvalues and Eigenfunctions of Schrödinger Equations Using a Model Reduction Approach , 2018 .

[12]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[13]  Baskar Ganapathysubramanian,et al.  Modeling diffusion in random heterogeneous media: Data-driven models, stochastic collocation and the variational multiscale method , 2007, J. Comput. Phys..

[14]  Nicholas Zabaras,et al.  A stochastic variational multiscale method for diffusion in heterogeneous random media , 2006, J. Comput. Phys..

[15]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[16]  V. Rokhlin,et al.  A fast randomized algorithm for the approximation of matrices ✩ , 2007 .

[17]  H. Owhadi,et al.  Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.

[18]  Houman Owhadi,et al.  Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games , 2015, SIAM Rev..

[19]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[20]  Houman Owhadi,et al.  Bayesian Numerical Homogenization , 2014, Multiscale Model. Simul..

[21]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[22]  Michel Loève,et al.  Probability Theory I , 1977 .

[23]  Thomas Y. Hou,et al.  A Multiscale Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficients , 2015, Multiscale Model. Simul..

[24]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[25]  Yalchin Efendiev,et al.  Constraint energy minimizing generalized multiscale finite element method in the mixed formulation , 2017, Computational Geosciences.

[26]  A. Quarteroni,et al.  Approximation results for orthogonal polynomials in Sobolev spaces , 1982 .

[27]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[28]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[29]  Thomas Y. Hou,et al.  Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics , 2006, J. Comput. Phys..

[30]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[31]  Jiang Wan,et al.  A probabilistic graphical model approach to stochastic multiscale partial differential equations , 2013, J. Comput. Phys..

[32]  Zhiwen Zhang,et al.  A Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficients , 2013, SIAM/ASA J. Uncertain. Quantification.

[33]  Christoph Schwab,et al.  Sparse finite elements for elliptic problems with stochastic loading , 2003, Numerische Mathematik.

[34]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[35]  James A. Nichols,et al.  Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.

[36]  Pengfei Liu,et al.  A heterogeneous stochastic FEM framework for elliptic PDEs , 2014, J. Comput. Phys..

[37]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[38]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[39]  R. Ghanem,et al.  Probabilistic equivalence and stochastic model reduction in multiscale analysis , 2008 .

[40]  V. Rokhlin,et al.  A randomized algorithm for the approximation of matrices , 2006 .

[41]  Pierre F. J. Lermusiaux,et al.  Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .