A Model Reduction Method for Multiscale Elliptic Pdes with Random Coefficients Using an Optimization Approach
暂无分享,去创建一个
Thomas Y. Hou | Zhiwen Zhang | Dingjiong Ma | Zhiwen Zhang | T. Hou | Thomas W. Wojciechowski | C. Furr-Holden | Richard Casey Sadler | Alan Harris | Danielle Lederer | Z. Buchalski | Dingjiong Ma
[1] Robert Lipton,et al. Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..
[2] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[3] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[4] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[5] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[6] D. Xiu. Fast numerical methods for stochastic computations: A review , 2009 .
[7] Guang Lin,et al. An adaptive ANOVA-based data-driven stochastic method for elliptic PDEs with random coefficient , 2014 .
[8] S. Aachen. Stochastic Differential Equations An Introduction With Applications , 2016 .
[9] Habib N. Najm,et al. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .
[10] Kari Karhunen,et al. Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .
[11] Shuangping Li,et al. Computing Eigenvalues and Eigenfunctions of Schrödinger Equations Using a Model Reduction Approach , 2018 .
[12] C. W. Gear,et al. Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .
[13] Baskar Ganapathysubramanian,et al. Modeling diffusion in random heterogeneous media: Data-driven models, stochastic collocation and the variational multiscale method , 2007, J. Comput. Phys..
[14] Nicholas Zabaras,et al. A stochastic variational multiscale method for diffusion in heterogeneous random media , 2006, J. Comput. Phys..
[15] Daniel Peterseim,et al. Localization of elliptic multiscale problems , 2011, Math. Comput..
[16] V. Rokhlin,et al. A fast randomized algorithm for the approximation of matrices ✩ , 2007 .
[17] H. Owhadi,et al. Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.
[18] Houman Owhadi,et al. Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games , 2015, SIAM Rev..
[19] R. Askey,et al. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .
[20] Houman Owhadi,et al. Bayesian Numerical Homogenization , 2014, Multiscale Model. Simul..
[21] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[22] Michel Loève,et al. Probability Theory I , 1977 .
[23] Thomas Y. Hou,et al. A Multiscale Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficients , 2015, Multiscale Model. Simul..
[24] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[25] Yalchin Efendiev,et al. Constraint energy minimizing generalized multiscale finite element method in the mixed formulation , 2017, Computational Geosciences.
[26] A. Quarteroni,et al. Approximation results for orthogonal polynomials in Sobolev spaces , 1982 .
[27] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[28] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[29] Thomas Y. Hou,et al. Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics , 2006, J. Comput. Phys..
[30] Hermann G. Matthies,et al. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .
[31] Jiang Wan,et al. A probabilistic graphical model approach to stochastic multiscale partial differential equations , 2013, J. Comput. Phys..
[32] Zhiwen Zhang,et al. A Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficients , 2013, SIAM/ASA J. Uncertain. Quantification.
[33] Christoph Schwab,et al. Sparse finite elements for elliptic problems with stochastic loading , 2003, Numerische Mathematik.
[34] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[35] James A. Nichols,et al. Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.
[36] Pengfei Liu,et al. A heterogeneous stochastic FEM framework for elliptic PDEs , 2014, J. Comput. Phys..
[37] Julia Charrier,et al. Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..
[38] W. T. Martin,et al. The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .
[39] R. Ghanem,et al. Probabilistic equivalence and stochastic model reduction in multiscale analysis , 2008 .
[40] V. Rokhlin,et al. A randomized algorithm for the approximation of matrices , 2006 .
[41] Pierre F. J. Lermusiaux,et al. Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .