Results from D—T experiments on TFTR and implications for achieving an ignited plasma

Progress in the performance of tokamak devices has enabled not only the production of significant bursts of fusion energy from deuterium–tritium plasmas in the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET) but, more importantly, the initial study of the physics of burning magnetically confined plasmas. As a result of the worldwide research on tokamaks, the scientific and technical issues for achieving an ignited plasma are better understood and the remaining questions more clearly defined. The principal research topics that have been studied on TFTR are transport, magnetohydrodynamic stability and energetic–particle confinement. The integration of separate solutions to problems in each of these research areas has also been of major interest. Although significant advances (such as the reduction of turbulent transport by means of internal transport barriers, identification of the theoretically predicted bootstrap current, and the study of the confinement of energetic fusion α–particles) have been made, interesting and important scientific and technical issues remain for achieving a magnetic fusion energy reactor. In this paper, the implications of the TFTR experiments for overcoming these remaining issues will be discussed.

[1]  Jet Team,et al.  Fusion energy-production from a deuterium-tritium plasma in the jet tokamak , 1992 .

[2]  Measurements of ion temperature fluctuations in the Tokamak Fusion Test Reactor , 1998 .

[3]  Manickam,et al.  Stabilization and onset of sawteeth in TFTR. , 1994, Physical review letters.

[4]  J. Manickam,et al.  Investigation of ballooning modes in high poloidal beta plasmas in the Tokamak Fusion Test Reactor , 1993 .

[5]  Fisch,et al.  Interaction of energetic alpha particles with intense lower hybrid waves. , 1992, Physical review letters.

[6]  R. Gruber,et al.  MHD-limits to plasma confinement , 1984 .

[7]  Manickam,et al.  Improved plasma performance in tokamaks with negative magnetic shear. , 1994, Physical review letters.

[8]  C. G. Bathke,et al.  A comparison of steady-state ARIES and pulsed PULSAR tokamak power plants , 1994 .

[9]  R. Budny,et al.  A STANDARD DT SUPERSHOT SIMULATION , 1994 .

[10]  William Dorland,et al.  Quantitative predictions of tokamak energy confinement from first‐principles simulations with kinetic effects , 1995 .

[11]  Coward,et al.  Confinement and heating of a deuterium-tritium plasma. , 1994, Physical review letters.

[12]  H. Zohm,et al.  The isotope effect in ASDEX , 1993 .

[13]  Manfredi,et al.  Test-particle transport in strong electrostatic drift turbulence with finite Larmor radius effects. , 1996, Physical review letters.

[14]  James R. Wilson,et al.  Ion cyclotron range of frequencies heating and flow generation in deuterium–tritium plasmas , 1998 .

[15]  K. H. Burrell,et al.  Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices , 1997 .

[16]  Coward,et al.  Fusion power production from TFTR plasmas fueled with deuterium and tritium. , 1994, Physical review letters.

[17]  L. Zakharov,et al.  Alpha-driven magnetohydrodynamics (MHD) and MHD-induced alpha loss in the Tokamak Fusion Test Reactor , 1997 .

[18]  P. R. Parker Design and issues of the ITER in-vessel components: ITER Joint Central Team and Home Teams , 1998 .

[19]  W. Heidbrink,et al.  CORRIGENDUM: The behaviour of fast ions in tokamak experiments , 1994 .

[20]  R. J. Hawryluk,et al.  Results from deuterium-tritium tokamak confinement experiments , 1997 .

[21]  Davis,et al.  High-temperature plasmas in a tokamak fusion test reactor. , 1987, Physical review letters.

[22]  R. Duvall,et al.  Quasilinear diffusion in stochastic magnetic fields: Reconciliation of drift‐orbit modification calculations , 1993 .

[23]  M. Rosenbluth,et al.  Non-linear analysis of the toroidicity induced Alfven eigenmode , 1995 .

[24]  Zhihong Lin,et al.  Neoclassical transport in enhanced confinement toroidal plasmas , 1996 .

[25]  D. McCune,et al.  Helium, iron, and electron particle transport and energy transport studies on the Tokamak Fusion Test Reactor , 1993 .

[26]  C. Hedrick,et al.  Strategies for modifying alpha driven TAE thresholds through q profile and ion temperature control , 1995 .

[27]  Tait,et al.  Local measurements of correlated momentum and heat transport in the TFTR tokamak. , 1990, Physical review letters.

[28]  N. Fisch,et al.  Alpha particle losses from Tokamak Fusion Test Reactor deuterium–tritium plasmas , 1996 .

[29]  Jet Team,et al.  Deuterium-Tritium plasmas in the Joint European Torus (JET): Behavior and implications , 1998 .

[30]  Bell,et al.  Confined alpha distribution measurements in a deuterium-tritium tokamak plasma. , 1995, Physical review letters.

[31]  J. Manickam,et al.  Ballooning instability precursors to high β disruptions on the Tokamak Fusion Test Reactor , 1996 .

[32]  R. Budny,et al.  Confined trapped alpha behaviour in TFTR deuterium-tritium plasmas , 1998 .

[33]  E. Synakowski,et al.  Core poloidal rotation and internal transport barrier formation in TFTR , 1998 .

[34]  E. D. Fredrickson,et al.  Improved confinement with reversed magnetic shear in TFTR. , 1995 .

[35]  Manickam,et al.  High- beta Disruption in Tokamaks. , 1995, Physical review letters.

[36]  R. Budny,et al.  Enhancement of Tokamak Fusion Test Reactor performance by lithium conditioning , 1996 .

[37]  M. Porkolab,et al.  UNIFYING ROLE OF RADIAL ELECTRIC FIELD SHEAR IN THE CONFINEMENT TRENDS OF TFTR SUPERSHOT PLASMAS , 1998 .

[38]  Olson,et al.  Measurements of fast confined alphas on TFTR. , 1995, Physical review letters.

[39]  G. Federici,et al.  Tritium Experience in Large Tokamaks: Application to ITER , 1998 .

[40]  E. Mazzucato,et al.  Observations of neutral beam and ICRF tail ion losses due to Alfvén modes in TFTR , 1997 .

[41]  A. T. Ramsey,et al.  Transport measurements for confined non-thermal alpha particles in TFTR DT plasmas , 1997 .

[42]  F. G. Rimini,et al.  Observation of Alpha Heating in JET DT Plasmas , 1998 .

[43]  A unified theory of tokamak transport via the generalized Balescu–Lenard collision operator , 1989 .

[44]  H. Mynick,et al.  Frequency-sweeping: A new technique for energy-selective transport , 1994 .

[45]  N. Fisch,et al.  Cooling Energetic α Particles in a Tokamak with Waves , 1997 .

[46]  R. Bell,et al.  Radial Electric Field Measurements in Reversed Shear Plasmas , 1998 .

[47]  Strachan,et al.  Fusion heating in a deuterium-tritium tokamak plasma. , 1996, Physical review letters.

[48]  Measurements of the production and transport of helium ash in the TFTR tokamak. , 1995 .

[49]  E. D. Fredrickson,et al.  ALPHA-PARTICLE-DRIVEN TOROIDAL ALFVEN EIGENMODES IN THE TOKAMAK FUSION TEST REACTOR , 1997 .

[50]  McGuire,et al.  Observation of nonlinear neoclassical pressure-gradient-driven tearing modes in TFTR. , 1995, Physical review letters.

[51]  N. Fisch,et al.  Alpha-particle physics in the tokamak fusion test reactor DT experiment , 1997 .

[52]  M. Ono Ion Bernstein wave heating research , 1993 .

[53]  M. Gryaznevich,et al.  Achievement of Record β in the START Spherical Tokamak , 1998 .

[54]  Beer,et al.  Turbulent Fluctuations in TFTR Configurations with Reversed Magnetic Shear. , 1996, Physical review letters.

[55]  R. Budny,et al.  Analysis of alpha particle‐driven toroidal Alfvén eigenmodes in Tokamak Fusion Test Reactor deuterium–tritium experiments , 1996 .

[56]  E. D. Fredrickson,et al.  Correlations of heat and momentum transport in the TFTR tokamak , 1990 .

[57]  Cheng,et al.  Particle dynamics in chirped-frequency fluctations. , 1994, Physical review letters.

[58]  G. Taylor,et al.  Roles of Electric Field Shear and Shafranov Shift in Sustaining High Confinement in Enhanced Reversed Shear Plasmas on the TFTR Tokamak , 1997 .

[59]  Lao,et al.  Enhanced confinement and stability in DIII-D discharges with reversed magnetic shear. , 1995, Physical review letters.

[60]  T. Fujita,et al.  Internal Transport Barrier for Electrons in JT-60U Reversed Shear Discharges , 1997 .

[61]  Paul,et al.  Long-wavelength density turbulence in the TFTR tokamak. , 1993, Physical review letters.

[62]  Glenn Bateman,et al.  Theory-based transport modeling of the gyro-radius experiments , 1996 .

[63]  Bell,et al.  Bootstrap current in TFTR. , 1988, Physical review letters.

[64]  Erik Mosekilde,et al.  Deterministic analysis of the probability machine , 1995 .

[65]  E. D. Fredrickson,et al.  REVIEW ARTICLES Fusion plasma experiments on TFTR: A 20 year retrospective* , 1998 .

[66]  Nazikian,et al.  Radial scale length of turbulent fluctuations in the main core of TFTR plasmas. , 1993, Physical review letters.