Computer modelling of heat transfer in Czochralski silicon crystal growth

Abstract A finite element quasi-steady state modelling of heat transfer during the growth of a silicon single crystal by the Czochralski (CZ) method is presented. Computations are performed for a comprehensive geometrical model of an actual CZ puller, accounting for detailed radiation heat exchange and introducing a reviewed set of temperature dependent thermophysical properties. The implemented problem solving procedure goes through the recursive scaling of the power yield in order to guarantee the melt/crystal/gas tri-junction temperature matches the melting one. An effective, time saving, numerical scheme is employed for the coupled convergence of both melt/crystal interface location and temperature distribution. Many different growth conditions are simulated for analyzing the sensitivity of the heat flow pattern versus changes of pull rate, gas convection and material properties. The results stress the strong influence of growth rate on the phase change interface deflection, while the input of a correct melt emissivity value is shown to be imperative for working out reliable predictions of the crystal thermal field. The computed temperatures are compared with the corresponding thermographic data collected by means of an infrared imaging system, allowing a satisfactory validation of the adopted mathematical model.

[1]  D.T.J. Hurle,et al.  Analytical representation of the shape of the meniscus in Czochralski growth , 1983 .

[2]  S. Motakef,et al.  Thermoelastic analysis of GaAs in LEC growth configuration: IV. effectiveness of top assembly and bottom heaters in control of stresses in low pressure systems , 1989 .

[3]  J. Lambropoulos,et al.  The effect of interface shape on thermal stress during Czochralski crystal growth , 1988 .

[4]  D. E. Bornside,et al.  Toward an integrated analysis of czochralski growth , 1989 .

[5]  R. L. Duty,et al.  Macroscopic Interface Shape During Solidification , 1966 .

[6]  Jeffrey J. Derby,et al.  Radiative heat exchange in Czochralski crystal growth , 1987 .

[7]  W. R. Runyan Silicon Semiconductor Technology , 1965 .

[8]  H. L. Grubin,et al.  Numerical simulations of Czochralski silicon growth , 1988 .

[9]  G. Grimvall Thermophysical properties of materials , 1986 .

[10]  M. Salcudean,et al.  Numerical analysis of heat transfer in LEC growth of GaAs , 1989 .

[11]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[12]  Adrian D. Jones Scaling analysis of the flow of a low Prandtl number Czochralski melt , 1988 .

[13]  A. Virzi Finite element analysis of the thermal history for Czochralski growth of large diameter silicon single crystals , 1989 .

[14]  J. Z. Zhu,et al.  The finite element method , 1977 .

[15]  Marcel Crochet,et al.  Numerical-calculation of the Global Heat-transfer in a Czochralski Furnace , 1986 .

[16]  P. Gresho,et al.  An integrated process model for the growth of oxide crystals by the Czochralski method , 1989 .

[17]  S. Ostrach,et al.  Transport phenomena near the interface of a czochralski-grown crystal , 1988 .

[18]  P. D. Maycock,et al.  Thermal Conductivity of Silicon from 300 to 1400°K , 1963 .

[19]  J. P. Hartnett,et al.  Handbook of Heat Transfer Fundamentals (Second Edition) , 1986 .

[20]  Samuel N. Rea,et al.  Czochralski silicon pull rate limits , 1981 .

[21]  F. F. Abraham,et al.  Rapid cooling of silicon (111)-melt interfaces by molecular dynamics , 1986 .

[22]  Sumio Kobayashi Heat transfer through the melt in a silicon Czochralski process , 1990 .

[23]  Jeffrey J. Derby,et al.  Finite Element Analysis of a Thermal‐Capillary Model for Liquid Encapsulated Czochralski Growth , 1985 .

[24]  George Williams,et al.  Heat transfer in silicon Czochralski crystal growth , 1983 .

[25]  György Szabó,et al.  Thermal strain during Czochralski growth , 1985 .

[26]  Interface shape in Czochralski grown crystals: Effect of conduction and radiation , 1985 .

[27]  R. A. Frederick,et al.  The Effects of Thermal History during Growth on O Precipitation in Czochralski Silicon , 1985 .

[28]  F. Dupret,et al.  Numerical-method for Reducing Stress Level in Gaas Crystals , 1989 .

[29]  Jeffrey J. Derby,et al.  On the quasi-steady-state assumption in modeling Czochralski crystal growth , 1988 .

[30]  Jeffrey J. Derby,et al.  Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth: I. Simulation , 1986 .

[31]  Modelling of the growth of GaAs by the LEC technique. I: Thermal distribution in the crystal , 1989 .

[32]  H. M. Liaw Interface shape and radial distribution of impurities in 〈111〉 silicon crystals , 1984 .

[33]  H. Kopetsch A numerical method for the time-dependent Stefan problem in Czochralski crystal growth , 1988 .

[34]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .