NMR and LC-MS assessment of compound variability of common bean (Phaseolus vulgaris) stored under controlled atmosphere

[1]  Hongshun Yang,et al.  Metabolomic analysis of energy regulated germination and sprouting of organic mung bean (Vigna radiata) using NMR spectroscopy. , 2019, Food chemistry.

[2]  D. Granot,et al.  An Overview of Sucrose Synthases in Plants , 2019, Front. Plant Sci..

[3]  Hongshun Yang,et al.  Metabolite profiling of Listeria innocua for unravelling the inactivation mechanism of electrolysed water by nuclear magnetic resonance spectroscopy. , 2018, International journal of food microbiology.

[4]  L. Silva,et al.  Chemometric analysis of NMR and GC datasets for chemotype characterization of essential oils from different species of Ocimum. , 2018, Talanta.

[5]  M. Brick,et al.  Genetic Architecture of Dietary Fiber and Oligosaccharide Content in a Middle American Panel of Edible Dry Bean , 2018, The plant genome.

[6]  H. Yanga,et al.  Metabolite pro fi ling of Listeria innocua for unravelling the inactivation mechanism of electrolysed water by nuclear magnetic resonance spectroscopy , 2018 .

[7]  Hongshun Yang,et al.  Evaluation of the metabolic response of Escherichia coli to electrolysed water by 1H NMR spectroscopy , 2017 .

[8]  L. Lukens,et al.  Proanthocyanidin accumulation and transcriptional responses in the seed coat of cranberry beans (Phaseolus vulgaris L.) with different susceptibility to postharvest darkening , 2017, BMC Plant Biology.

[9]  S. Vittori,et al.  Determination of fourteen polyphenols in pulses by high performance liquid chromatography-diode array detection (HPLC-DAD) and correlation study with antioxidant activity and colour. , 2017, Food chemistry.

[10]  C. Quispe,et al.  UHPLC high resolution orbitrap metabolomic fingerprinting of the unique species Ophryosporus triangularis Meyen from the Atacama Desert, Northern Chile , 2017 .

[11]  F. H. Larsen,et al.  Genotype evaluation of cowpea seeds (Vigna unguiculata) using 1H qNMR combined with exploratory tools and solid-state NMR. , 2017, Food research international.

[12]  L. Faroni,et al.  Hermetic storage for control of common bean weevil, Acanthoscelides obtectus (Say) , 2016 .

[13]  H. Park,et al.  Comparison of Metabolites Variation and Antiobesity Effects of Fermented versus Nonfermented Mixtures of Cudrania tricuspidata, Lonicera caerulea, and Soybean According to Fermentation In Vitro and In Vivo , 2016, PloS one.

[14]  Zhu Mj Characterization of Polyphenolics in Grape Pomace Extracts Using ESI Q-TOF MS/MS , 2015 .

[15]  J. Cherif,et al.  Quantitative determination and identification of phenolic compounds of three Tunisian legumes: Vicia faba, Lens culinaris and Phaseolus vulgaris , 2015 .

[16]  Kun-song Chen,et al.  Identification of Proanthocyanidins from Litchi (Litchi chinensis Sonn.) Pulp by LC-ESI-Q-TOF-MS and Their Antioxidant Activity , 2015, PLoS ONE.

[17]  D. Arráez-Román,et al.  HPLC-DAD-ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. , 2015, Food chemistry.

[18]  N. L. Vanier,et al.  Effects of nitrogen-modified atmosphere storage on physical, chemical and technological properties of Carioca bean , 2014 .

[19]  F. A. Villela,et al.  Vigor: separação de lotes de sementes pela atividade respiratória , 2014 .

[20]  L. Lião,et al.  Distinction between a transgenic and a conventional common bean genotype by 1H HR-MAS NMR. , 2013, Food chemistry.

[21]  D. Christ,et al.  Physico-chemical properties of common beans under natural and accelerated storage conditions , 2013 .

[22]  J. Lozano-Sánchez,et al.  Phytochemical characterisation of green beans (Phaseolus vulgaris L.) by using high-performance liquid chromatography coupled with time-of-flight mass spectrometry. , 2013, Phytochemical analysis : PCA.

[23]  D. Jackson,et al.  Sugars, signalling, and plant development. , 2012, Journal of experimental botany.

[24]  Palmira Villa,et al.  Descriptive review of current NMR-based metabolomic data analysis packages. , 2011, Progress in nuclear magnetic resonance spectroscopy.

[25]  한상준 HPLC/MS/MS Method for Determination of Soyasaponins in the Soybean Varieties , 2011 .

[26]  M. Kadivar,et al.  Chemical and microstructural evaluation of ‘hard‐to‐cook’ phenomenon in legumes (pinto bean and small‐type lentil) , 2011 .

[27]  Jianguo Xia,et al.  Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst , 2011, Nature Protocols.

[28]  L. Lião,et al.  Quantification of Oligosaccharides from Common Beans by HR-MAS NMR , 2011 .

[29]  T. Emanuelli,et al.  Cultivar, harvest year, and storage conditions affecting nutritional quality of common beans (Phaseolus vulgaris L. , 2010 .

[30]  David S. Wishart,et al.  MetaboAnalyst: a web server for metabolomic data analysis and interpretation , 2009, Nucleic Acids Res..

[31]  F. Lajolo,et al.  Polyphenols and antioxidant capacity of seed coat and cotyledon from Brazilian and Peruvian bean cultivars (Phaseolus vulgaris L.). , 2007, Journal of agricultural and food chemistry.

[32]  R. Prior,et al.  Changes in polyphenols of the seed coat during the after-darkening process in pinto beans (Phaseolus vulgaris L.). , 2005, Journal of agricultural and food chemistry.

[33]  P. Geigenberger,et al.  Response of plant metabolism to too little oxygen. , 2003, Current opinion in plant biology.

[34]  P. McClean,et al.  Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). , 2002, The Journal of heredity.

[35]  William Wells,et al.  Metabolite profiling , 2000, Genome Biology.

[36]  K. Mcwatters,et al.  Protein insolubilization and thermal destabilization during storage as related to hard-to-cook defect in cowpeas , 1992 .

[37]  K. Harada,et al.  Composition and structure of "group B saponin" in soybean seed. , 1991, Agricultural and biological chemistry.

[38]  F. Yamauchi,et al.  Saponin and Sapogenol. XLII. : Structures of Acetyl-soyasaponins A1, A2, and A3, Astringent Partially Acetylated Bisdesmosides of Soyasapogenol A, from American Soybean, the Seeds of Glycine max MERRILL. , 1988 .

[39]  D. K. Salunkhe,et al.  Quick-cooking beans (Phaseolus vulgaris L.): II. Phytates, oligosaccharides, and antienzymes , 1980 .

[40]  C. C. Baskin,et al.  Accelerated Aging Techniques for Predicting the Relative Storability of Seed Lots , 1973 .

[41]  C. J. Morris,et al.  The detection, isolation, and identification of gamma-glutamyl-S-methylcysteine from beans. , 1958, Archives of Biochemistry and Biophysics.