Running title: Temperature affects chemical communication

[1]  J. Blanchard,et al.  A bioenergetic framework for the temperature dependence of trophic interactions. , 2014, Ecology letters.

[2]  T. Oliver,et al.  Oviposition responses to patch quality in the larch ladybird Aphidecta obliterata (Coleoptera: Coccinellidae): effects of aphid density, and con- and heterospecific tracks , 2006, Bulletin of Entomological Research.

[3]  H. D. Cooper,et al.  Scenarios for Global Biodiversity in the 21st Century , 2010, Science.

[4]  K. R. Clarke,et al.  Non‐parametric multivariate analyses of changes in community structure , 1993 .

[5]  Muriel Gevrey,et al.  Small-scale gold mining erodes fish assemblage structure in small neotropical streams , 2011, Biodiversity and Conservation.

[6]  R. Verheyen,et al.  Responses of the lizard Lacerta vivipara to predator chemical cues: the effects of temperature , 1990, Animal Behaviour.

[7]  G. J. Blomquist,et al.  Insect hydrocarbons : biology, biochemistry, and chemical ecology , 2010 .

[8]  A. Dixon,et al.  Chemical nature and persistence of the oviposition deterring pheromone in the tracks of the larvae of the two spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae) , 2001, CHEMOECOLOGY.

[9]  L. Tirry,et al.  Temperature-Dependent Development of the Two-Spotted Ladybeetle, Adalia bipunctata, on the Green Peach Aphid, Myzus persicae, and a Factitious Food Under Constant Temperatures , 2010, Journal of insect science.

[10]  M. Seagraves Lady beetle oviposition behavior in response to the trophic environment , 2009 .

[11]  D. Ponsonby,et al.  Environmental influences on fecundity, egg viability and egg cannibalism in the scale insect predator, Chilocorus nigritus , 1998, BioControl.

[12]  J. McNeil Behavioral ecology of pheromone-mediated communication in moths and its importance in the use of pheromone traps , 1991 .

[13]  I. Hodek Biology of Coccinellidae , 1973, Springer Netherlands.

[14]  A. Dixon,et al.  Age and experience influence patch assessment for oviposition by an insect predator , 2004 .

[15]  A. Dixon,et al.  Assessment of patch quality by ladybirds: relative response to conspecific and heterospecific larval tracks a consequence of habitat similarity? , 2007, Chemoecology.

[16]  Johan van de Koppel,et al.  Reconciling complexity with stability in naturally assembling food webs , 2007, Nature.

[17]  J. Millar,et al.  Preparation, Cleanup, and Preliminary Fractionation of Extracts , 1998 .

[18]  Erik B. Erhardt,et al.  Rates of biotic interactions scale predictably with temperature despite variation , 2014 .

[19]  Brian H. McArdle,et al.  FITTING MULTIVARIATE MODELS TO COMMUNITY DATA: A COMMENT ON DISTANCE‐BASED REDUNDANCY ANALYSIS , 2001 .

[21]  T. Jones,et al.  The role of chemical communication in mate choice , 2007, Biological reviews of the Cambridge Philosophical Society.

[22]  Josep Peñuelas,et al.  BVOCs and global change. , 2010, Trends in plant science.

[23]  E. Haubruge,et al.  Assessment of oviposition site quality by aphidophagous hoverflies: reaction to conspecific larvae , 2010, Animal Behaviour.

[24]  J. Bascompte,et al.  Global change and species interactions in terrestrial ecosystems. , 2008, Ecology letters.

[25]  D. Papaj Ovarian dynamics and host use. , 2000, Annual review of entomology.

[26]  A. Gibbs,et al.  Lipid melting and cuticular permeability: new insights into an old problem. , 2002, Journal of insect physiology.

[27]  X. Martini,et al.  Evolution of cannibalism and female's response to oviposition-deterring pheromone in aphidophagous predators. , 2009, The Journal of animal ecology.

[28]  A. Sentis,et al.  Towards a mechanistic understanding of temperature and enrichment effects on species interaction strength, omnivory and food-web structure. , 2014, Ecology letters.

[29]  M. Heil Indirect defence via tritrophic interactions. , 2008, The New phytologist.

[30]  A. Sentis,et al.  Using functional response modeling to investigate the effect of temperature on predator feeding rate and energetic efficiency , 2012, Oecologia.

[31]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[32]  Joshua S. Yuan,et al.  Smelling global climate change: mitigation of function for plant volatile organic compounds. , 2009, Trends in ecology & evolution.

[33]  James H. Brown,et al.  Effects of Size and Temperature on Metabolic Rate , 2001, Science.

[34]  Sonia Kéfi,et al.  More than a meal… integrating non-feeding interactions into food webs. , 2012, Ecology letters.

[35]  A. Sentis,et al.  Parsing handling time into its components: implications for responses to a temperature gradient. , 2013, Ecology.

[36]  Björn C. Rall,et al.  Ecological stability in response to warming , 2014 .

[37]  R. Cardé,et al.  Advances in insect chemical ecology , 2004 .

[38]  G. Poppy,et al.  Climate Change and its Effects on the Chemical Ecology of Insect Parasitoids , 2013 .

[39]  R. Walters,et al.  What limits insect fecundity? Body size- and temperature-dependent egg maturation and oviposition in a butterfly , 2008 .

[40]  A. Dixon,et al.  Assessment of patch quality by ladybirds: role of larval tracks , 1998, Oecologia.

[41]  A. Hastings,et al.  Weak trophic interactions and the balance of nature , 1998, Nature.

[42]  Göran Englund,et al.  Temperature dependence of the functional response. , 2011, Ecology letters.