Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions
暂无分享,去创建一个
[1] Vikas Sindhwani,et al. On Manifold Regularization , 2005, AISTATS.
[2] H. Wackernagel. Multivariate Geostatistics , 2004 .
[3] Nicolas Le Roux,et al. Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.
[4] William H. Press,et al. Numerical recipes in C , 2002 .
[5] Jitendra Malik,et al. Efficient spatiotemporal grouping using the Nystrom method , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.
[6] Christopher K. I. Williams,et al. Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.
[7] D. Slepian. Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .
[8] D. Slepian,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .
[9] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[10] I. J. Schoenberg. Metric spaces and completely monotone functions , 1938 .