A two-stage surrogate model for Neo-Hookean problems based on adaptive proper orthogonal decomposition and hierarchical tensor approximation

Abstract The evaluation of robustness and reliability of realistic structures in the presence of uncertainty is numerically costly. This motivates model order reduction techniques like the proper orthogonal decomposition (POD), which gives an approximate model on the basis of a set of precomputations of a full model. This reduces the computational time. The reduction achieved by POD is usually not sufficient in the uncertainty quantification or optimization context where a large number of evaluations has to be carried out. In this context, it is also common that only a few quantities are of interest and a further reduction is possible. The second reduction may be represented by a mapping from a possibly high-dimensional parameter space onto each quantity of interest (QoI). In general, it is difficult to construct such a mapping from an unreduced model. Hence, in this paper a two-stage surrogate model that combines both reduction approaches is introduced. This surrogate model is tailored and applied to Neo-Hookean model problems with plasticity, hardening and damage. Here, the knowledge of the model allows an adaptive selection of the POD basis on the first stage. This idea is elaborated into a generalized framework called adaptive proper orthogonal decomposition (APOD). The second stage consists of the hierarchical tensor approximation (HTA) which is easily adjusted to the accuracy and computational cost of the first stage such that the two-stage surrogate model becomes an efficient option for uncertainty quantification and optimization for Neo-Hookean problems. Additionally, with both stages at hand, the HTA is utilized for a greedy snapshot search to improve the basis of APOD and POD. This is useful if no expert knowledge is available to guide the snapshot selection in the offline phase.

[1]  Tjalling J. Ypma,et al.  Historical Development of the Newton-Raphson Method , 1995, SIAM Rev..

[2]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[3]  Stefan Volkwein,et al.  Proper orthogonal decomposition for optimality systems , 2008 .

[4]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[5]  Gianluigi Rozza,et al.  Stabilized Weighted Reduced Basis Methods for Parametrized Advection Dominated Problems with Random Inputs , 2017, SIAM/ASA J. Uncertain. Quantification.

[6]  Paul Suetens,et al.  Very fast soft tissue predictions with mass tensor model for maxillofacial surgery planning systems , 2005 .

[7]  Gianluigi Rozza,et al.  A Weighted POD Method for Elliptic PDEs with Random Inputs , 2018, J. Sci. Comput..

[8]  Gabriel Wittum,et al.  Parallel tensor sampling in the hierarchical Tucker format , 2015, Comput. Vis. Sci..

[9]  N. Higham The numerical stability of barycentric Lagrange interpolation , 2004 .

[10]  Mark A. Ganter,et al.  Real-time finite element modeling for surgery simulation: an application to virtual suturing , 2004, IEEE Transactions on Visualization and Computer Graphics.

[11]  Robert L. Taylor,et al.  FEAP - - A Finite Element Analysis Program , 2011 .

[12]  Chong Wang,et al.  Evidence theory-based reliability optimization design using polynomial chaos expansion , 2018, Computer Methods in Applied Mechanics and Engineering.

[13]  G. Kerschen,et al.  The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview , 2005 .

[14]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[15]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[16]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[17]  Alexander Osinsky,et al.  Pseudo-skeleton approximations with better accuracy estimates , 2018 .

[18]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[19]  Wolfgang Hackbusch,et al.  An Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples , 2011, Comput. Methods Appl. Math..

[20]  Bernard Haasdonk,et al.  A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space , 2011 .

[21]  Anthony Nouy,et al.  Low-rank tensor methods for model order reduction , 2015, 1511.01555.

[22]  M. Magdon-Ismail,et al.  Finding Maximum Volume Sub-matrices of a Matrix , 2007 .

[23]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[24]  S. Reese,et al.  POD‐based model reduction with empirical interpolation applied to nonlinear elasticity , 2016 .

[25]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[26]  S. Reese,et al.  An Adaptive Way of Choosing Significant Snapshots for Proper Orthogonal Decomposition , 2019, IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018.

[27]  Wolfgang Graf,et al.  Recurrent neural networks for fuzzy data , 2011, Integr. Comput. Aided Eng..

[28]  R. E. Nickell,et al.  Nonlinear dynamics by mode superposition , 1976 .

[29]  Charbel Farhat,et al.  Nonlinear model order reduction based on local reduced‐order bases , 2012 .

[30]  J. Marsden,et al.  Dimensional model reduction in non‐linear finite element dynamics of solids and structures , 2001 .

[31]  Robert Scheichl,et al.  A Hybrid Alternating Least Squares-TT-Cross Algorithm for Parametric PDEs , 2017, SIAM/ASA J. Uncertain. Quantification.

[32]  Thomas Henneron,et al.  Model-Order Reduction of Multiple-Input Non-Linear Systems Based on POD and DEI Methods , 2015, IEEE Transactions on Magnetics.

[33]  S. Goreinov,et al.  The maximum-volume concept in approximation by low-rank matrices , 2001 .

[34]  Jens L. Eftang,et al.  An hp certified reduced basis method for parametrized parabolic partial differential equations , 2011 .

[35]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[36]  A. Simone,et al.  POD-DEIM model order reduction for strain softening viscoplasticity , 2017 .

[37]  Hermann G. Matthies,et al.  Uncertainty Quantification in numerical Aerodynamic via low‐rank Response Surface , 2012 .

[38]  I. Oseledets,et al.  Calculating vibrational spectra of molecules using tensor train decomposition. , 2016, The Journal of chemical physics.

[39]  Samuel Forest,et al.  Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage , 2009 .

[40]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[41]  Stefan Volkwein,et al.  POD‐Galerkin approximations in PDE‐constrained optimization , 2010 .

[42]  S. Goreinov,et al.  How to find a good submatrix , 2010 .

[43]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[44]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[45]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[46]  A. Chatterjee An introduction to the proper orthogonal decomposition , 2000 .

[47]  Simona Perotto,et al.  A POD‐selective inverse distance weighting method for fast parametrized shape morphing , 2017, International Journal for Numerical Methods in Engineering.

[48]  S. Reese,et al.  A comparison of projection-based model reduction concepts in the context of nonlinear biomechanics , 2013, Archive of Applied Mechanics.

[49]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[50]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[51]  J. Ballani,et al.  Black box approximation of tensors in hierarchical Tucker format , 2013 .

[52]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[53]  Gaëtan Kerschen,et al.  PROPER ORTHOGONAL DECOMPOSITION FOR MODEL UPDATING OF NON-LINEAR MECHANICAL SYSTEMS , 2001 .

[54]  Stephan Wulfinghoff,et al.  Gradient-extended two-surface damage-plasticity: Micromorphic formulation and numerical aspects , 2017 .

[55]  Hermann G. Matthies,et al.  Parameter estimation via conditional expectation: a Bayesian inversion , 2016, Adv. Model. Simul. Eng. Sci..

[56]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[57]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[58]  Lars Grasedyck,et al.  Hierarchical Tensor Approximation of Output Quantities of Parameter-Dependent PDEs , 2015, SIAM/ASA J. Uncertain. Quantification.

[59]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[60]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[61]  S. Reese,et al.  A new locking-free brick element technique for large deformation problems in elasticity ☆ , 2000 .

[62]  Felix J. Herrmann,et al.  Optimization on the Hierarchical Tucker manifold – Applications to tensor completion , 2014, Linear Algebra and its Applications.

[63]  Per-Gunnar Martinsson,et al.  Efficient algorithms for cur and interpolative matrix decompositions , 2014, Adv. Comput. Math..

[64]  Stefan Vandewalle,et al.  Computation of the output of a function with fuzzy inputs based on a low-rank tensor approximation , 2017, Fuzzy Sets Syst..

[65]  Daniel Kressner,et al.  Multilevel tensor approximation of PDEs with random data , 2016 .

[66]  Thomas Henneron,et al.  Model-Order Reduction of Magnetoquasi-Static Problems Based on POD and Arnoldi-Based Krylov Methods , 2015, IEEE Transactions on Magnetics.

[67]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[68]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[69]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[70]  R. Bellman Dynamic programming. , 1957, Science.

[71]  Sebastian Schöps,et al.  An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem , 2016, ArXiv.

[72]  Alan M. Frieze,et al.  Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.

[73]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[74]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .