MESFET DC model parameter extraction using Quantum Particle Swarm Optimization

This paper presents two techniques for DC model parameter extraction for a Gallium Arsenide (GaAs) based MEtal Semiconductor Field Effect Transistor (MESFET) device. The proposed methods uses Particle Swarm Optimization (PSO) and Quantum Particle Swarm Optimization (QPSO) methods for optimizing the difference between measured data and simulated data. Simulated data are obtained by using four different popular DC models. These techniques avoid complex computational steps involved in traditional parameter extraction techniques. The performance comparison in terms of quality of solution and execution time of classical PSO and QPSO to extract the model parameters are presented. The validity of this approach is verified by comparing the simulated and measured results of a fabricated GaAs MESFET device with gate length of 0.7 lm and gate width of 600 l m( 4� 150). Simulation results indicate that both the technique based on PSO and QPSO accurately extracts the model parameters of MESFET.

[1]  Shuyuan Yang,et al.  A quantum particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[2]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[3]  Samrat L. Sabat,et al.  The hyperspherical acceleration effect particle swarm optimizer , 2009, Appl. Soft Comput..

[4]  Wenbo Xu,et al.  Particle swarm optimization with particles having quantum behavior , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[5]  Ajith Abraham,et al.  Improved Particle Swarm Optimization with low-discrepancy sequences , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[6]  S.L. Sabat,et al.  MESFET small signal model parameter extraction using particle swarm optimization , 2008, 2008 International Conference on Microelectronics.

[7]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[8]  N. M. Memon,et al.  A comprehensive four parameters I–V model for GaAs MESFET output characteristics , 2007 .

[9]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[10]  A.A. Kishk,et al.  Quantum Particle Swarm Optimization for Electromagnetics , 2006, IEEE Transactions on Antennas and Propagation.

[11]  Jing Liu,et al.  Using quantum-behaved particle swarm optimization algorithm to solve non-linear programming problems , 2007, Int. J. Comput. Math..

[12]  Ajith Abraham,et al.  Particle Swarm Optimization Using Adaptive Mutation , 2008, 2008 19th International Workshop on Database and Expert Systems Applications.

[13]  Yifan Gao Genetic algorithm-based parameter-extraction for power GaAs MESFET , 2001, 5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service. TELSIKS 2001. Proceedings of Papers (Cat. No.01EX517).

[14]  R. Hallgren,et al.  TOM3 capacitance model: linking large- and small-signal MESFET models in SPICE , 1999 .

[15]  Ajith Abraham,et al.  Optimization of a Kraft Pulping System: Using Particle Swarm Optimization and Differential Evolution , 2008, 2008 Second Asia International Conference on Modelling & Simulation (AMS).

[16]  W. Curtice,et al.  A Nonlinear GaAs FET Model for Use in the Design of Output Circuits for Power Amplifiers , 1985 .

[17]  Amit Konar,et al.  Hardware Software Partitioning Problem in Embedded System Design Using Particle Swarm Optimization Algorithm , 2008, 2008 International Conference on Complex, Intelligent and Software Intensive Systems.

[18]  Y. Tajima,et al.  GaAs FET large-signal model and its application to circuit designs , 1981, IEEE Transactions on Electron Devices.

[19]  T. Kacprzak,et al.  Computer Calculation of Large-Signal GaAs FET Amplifier Characteristics , 1985 .