The Worst-Case GMRES for Normal Matrices
暂无分享,去创建一个
[1] H. S. Shapiro,et al. A Unified Approach to Certain Problems of Approximation and Minimization , 1961 .
[2] Kim-Chuan Toh,et al. SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .
[3] Dianne P. O'Leary,et al. Complete stagnation of gmres , 2003 .
[4] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[5] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[6] A MIN-MAX PROBLEM ON ROOTS OF UNITY , 2003 .
[7] Lloyd N. Trefethen,et al. GMRES/CR and Arnoldi/Lanczos as Matrix Approximation Problems , 2018, SIAM J. Sci. Comput..
[8] Ilya Zavorin. Spectral factorization of the Krylov matrix and convergence of GMRES , 2002 .
[9] Wayne Joubert,et al. A Robust GMRES-Based Adaptive Polynomial Preconditioning Algorithm for Nonsymmetric Linear Systems , 1994, SIAM J. Sci. Comput..
[10] Anne Greenbaum,et al. Max-Min Properties of Matrix Factor Norms , 1994, SIAM J. Sci. Comput..
[11] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[12] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[13] Ilse C. F. Ipsen. Expressions and Bounds for the GMRES Residual , 2000, Bit Numerical Mathematics.
[14] A. Greenbaum. Comparison of splittings used with the conjugate gradient algorithm , 1979 .
[15] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[16] H. O. Lancaster. The Helmert Matrices , 1965 .
[17] Jörg Liesen,et al. Construction and analysis of polynomial iterative methods for non-hermitian systems of linear equations , 1998 .
[18] James M. Varah,et al. The prolate matrix , 1993 .
[19] J. Liesen,et al. Least Squares Residuals and Minimal Residual Methods , 2001, SIAM J. Sci. Comput..
[20] Org Liesen. THE WORST-CASE GMRES FOR NORMAL , 2004 .