Postnatal development of bulbospinal serotoninergic system. effects of GMI ganglioside following neonatal 5,7-dihydroxytryptamine treatment

[1]  J. Fozard 5-HT: The Enigma Variations , 1987 .

[2]  A. Guidotti,et al.  Ganglioside inhibition of glutamate-mediated protein kinase C translocation in primary cultures of cerebellar neurons. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Scott R. Whittemore,et al.  The expression, localization and functional significance of β-nerve growth factor in the central nervous system , 1987, Brain Research Reviews.

[4]  C. Fischette,et al.  Effects of 5, 7-dihydroxytryptamine on serotonin1 and serotonin2 receptors throughout the rat central nervous system using quantitative autoradiography , 1987, Brain Research.

[5]  B. Bregman Development of serotonin immunoreactivity in the rat spinal cord and its plasticity after neonatal spinal cord lesions. , 1987, Brain research.

[6]  M. Sofroniew,et al.  Parenterally administered GM1 ganglioside prevents retrograde degeneration of cholinergic cells of the rat basal forebrain , 1986, Brain Research.

[7]  Z. Rossetti,et al.  Administration of GMI. ganglioside restores the dopamine content in striatum after chronic treatment with MPTP , 1986, Neuropharmacology.

[8]  F. Hefti,et al.  Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  M. Sofroniew,et al.  Retrograde changes in the nucleus basalis of the rat, caused by cortical damage, are prevented by exogenous ganglioside GM1 , 1986, Brain Research.

[10]  F. Roisen,et al.  Neuritogenic and metabolic effects of individual gangliosides and their interaction with nerve growth factor in cultures of neuroblastoma and pheochromocytoma. , 1986, Brain research.

[11]  A. Gorio,et al.  In vivo treatment with GM1 prevents the rapid decay of ATPase activities and mitochondrial damage in hippocampal slices , 1986, Brain Research.

[12]  M. Kalia,et al.  Ganglioside-induced regeneration and reestablishment of axonal continuity in spinal cord-transected rats , 1986, Neuroscience Letters.

[13]  S. Mahadik,et al.  Acute Effects of Gangliosides on CNS Injury , 1986 .

[14]  A. Gorio,et al.  GM1 ganglioside counteracts selective neurotoxin‐induced lesion of developing serotonin neurons in rat spinal cord , 1986, Journal of neuroscience research.

[15]  S. Skaper,et al.  Ganglioside GM1 overcomes serum inhibition of neuritic outgrowth , 1985, International Journal of Developmental Neuroscience.

[16]  D. J. Smith,et al.  Demonstration of an Autoreceptor Modulating the Release of [3H]5‐Hydroxytryptamine from a Synaptosomal‐Rich Spinal Cord Tissue Preparation , 1985, Journal of neurochemistry.

[17]  J. Palacios,et al.  Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors , 1985, Brain Research.

[18]  S. Skaper,et al.  GM1 ganglioside accelerates neurite outgrowth from primary peripheral and central neurons under selected culture conditions. , 1985, Brain research.

[19]  B. Shaywitz,et al.  Cerebrospinal fluid (CSF) and brain monoamine metabolites in the developing rat pup. , 1985, Brain research.

[20]  A. Gorio,et al.  GM1 ganglioside enhances regrowth of noradrenaline nerve terminals in rat cerebral cortex lesioned by the neurotoxin 6-hydroxydopamine , 1984, Neuroscience.

[21]  P. Panula,et al.  Spinal cord serotonin: A biochemical and immunohistochemical study following transection , 1984, Brain Research.

[22]  A. Gorio,et al.  Effect of GM1 ganglioside on neonatally neurotoxin induced degeneration of serotonin neurons in the rat brain. , 1984, Brain research.

[23]  K. Fuxe,et al.  Effect of GM1 ganglioside treatment on the recovery of dopaminergic nigro-striatal neurons after different types of lesion. , 1984, Acta physiologica Scandinavica.

[24]  B. Sabel,et al.  GM1 ganglioside treatment facilitates behavioral recovery from bilateral brain damage. , 1984, Science.

[25]  L. Facci,et al.  Promotion of Neuritogenesis in Mouse Neuroblastoma Cells by Exogenous Gangliosides. Relationship Between the Effect and the Cell Association of Ganglioside GM1 , 1984, Journal of neurochemistry.

[26]  M. Hamon,et al.  Central Serotonin Receptors , 1984 .

[27]  A. Gorio,et al.  Effects of GM1 ganglioside on developing and mature serotonin and noradrenaline neurons lesioned by selective neurotoxins , 1984, Journal of neuroscience research.

[28]  M. Skup,et al.  Effect of GM1 ganglioside treatment on postlesion responses of cholinergic enzymes in rat hippocampus after various partial deafferentations , 1984, Journal of neuroscience research.

[29]  A. Gorio,et al.  Gangliosides' dual mode of action: A Working hypothesis , 1984, Journal of neuroscience research.

[30]  S. Karpiak Ganglioside treatment improves recovery of alternation behavior after unilateral entorhinal cortex lesion , 1983, Experimental Neurology.

[31]  A. Gorio,et al.  Gangliosides enhance neurite outgrowth in PC12 cells. , 1983, Brain research.

[32]  P. Monroe,et al.  Characterization of Multiple [3H]5–Hydroxytryptamine Binding Sites in Rat Spinal Cord Tissue , 1983, Journal of neurochemistry.

[33]  M. Kirby,et al.  Developmental changes in serotonin and 5-hydroxyindoleacetic acid concentrations and opiate receptor binding in rat spinal cord following neonatal 5,7-dihydroxytryptamine treatment. , 1982, Developmental neuroscience.

[34]  R. Wurtman,et al.  Developmental changes in brain indoles, serum tryptophan and other serum neutral amino acids in the rat. , 1981, Brain research.

[35]  S. Bondy,et al.  Previously Published Works Uc Irvine Title: the Maturation of Cortical Serotonin and Muscarinic Cholinergic Binding Sites , 2022 .

[36]  D. Sibley,et al.  Receptor adaptations to centrally acting drugs. , 1981, Annual review of pharmacology and toxicology.

[37]  L. Svennerholm Gangliosides and synaptic transmission. , 1980, Advances in experimental medicine and biology.

[38]  S H Snyder,et al.  Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. , 1979, Molecular pharmacology.

[39]  C. Sachs,et al.  DEVELOPMENTAL PLASTICITY OF CENTRAL SEROTONIN NEURONS AFTER 5,7‐DIHYDROXYTRYPTAMINE TREATMENT * , 1978, Annals of the New York Academy of Sciences.

[40]  J. Glowinski,et al.  5‐HYDROXYTRYPTAMINE CATABOLISM IN THE RAT BRAIN DURING ONTOGENESIS , 1977, Journal of neurochemistry.

[41]  A. Björklund,et al.  Chapter 3 – Chemical Lesioning of Indoleamine Pathways1 , 1977 .

[42]  M. Youdim,et al.  ONTOGENESIS OF ENZYME SYSTEMS DEAMINATING DIFFERENT MONOAMINES , 1976, British journal of pharmacology.

[43]  E. Mugnaini,et al.  Light and electron microscopic studies on the excessive growth of sympathetic ganglia in rats injected daily from birth with 6-OHDA and NGF. , 1975, Archives Italiennes de Biologie.

[44]  R. Baldessarini,et al.  Biochemical effects of dihydroxylated tryptamines on central indoleamine neurones. , 1974, Neuropharmacology.

[45]  L. D. Lytle,et al.  Long-term effects of 5,7-dihydroxytryptamine administered at birth on the development of brain monoamines. , 1974, Life sciences.

[46]  J. Glowinski,et al.  PLASMA TRYPTOPHAN AND 5‐HT METABOLISM IN THE CNS OF THE NEWBORN RAT , 1974, Journal of neurochemistry.

[47]  L. D. Lytle,et al.  Long-term effects of 5,7-dihydroxytryptamine on brain monoamines. , 1974, Life sciences.

[48]  F. Bonali,et al.  A new procedure for the extraction, purification and fractionation of brain gangliosides. , 1973, Biochimica et biophysica acta.

[49]  G GOERANSSON,et al.  THE METABOLISM OF FATTY ACIDS IN THE RAT. VI. ARACHIDONIC ACID. , 1965, Acta physiologica Scandinavica.

[50]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.