Olfactory receptor neurons use gain control and complementary kinetics to encode intermittent odorant stimuli

Insects find food and mates by navigating odorant plumes that can be highly intermittent, with intensities and durations that vary rapidly over orders of magnitude. Much is known about olfactory responses to pulses and steps, but it remains unclear how olfactory receptor neurons (ORNs) detect the intensity and timing of natural stimuli, where the absence of scale in the signal makes detection a formidable olfactory task. By stimulating Drosophila ORNs in vivo with naturalistic and Gaussian stimuli, we show that ORNs adapt to stimulus mean and variance, and that adaptation and saturation contribute to naturalistic sensing. Mean-dependent gain control followed the Weber-Fechner relation and occurred primarily at odor transduction, while variance-dependent gain control occurred at both transduction and spiking. Transduction and spike generation possessed complementary kinetic properties, that together preserved the timing of odorant encounters in ORN spiking, regardless of intensity. Such scale-invariance could be critical during odor plume navigation. DOI: http://dx.doi.org/10.7554/eLife.27670.001

[1]  Aurel A Lazar,et al.  Figures and figure supplements Projection neurons in Drosophila antennal lobes signal the acceleration of odor concentrations , 2015 .

[2]  J. Alonso,et al.  Adaptation to Stimulus Contrast and Correlations during Natural Visual Stimulation , 2007, Neuron.

[3]  M. Maravall,et al.  Intrinsic Mechanisms for Adaptive Gain Rescaling in Barrel Cortex , 2008, The Journal of Neuroscience.

[4]  John R. Carlson,et al.  Non-synaptic inhibition between grouped neurons in an olfactory circuit , 2012, Nature.

[5]  Charles F Stevens,et al.  What the fly’s nose tells the fly’s brain , 2015, Proceedings of the National Academy of Sciences.

[6]  Jonathan B Demb,et al.  Distinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell , 2008, The Journal of physiology.

[7]  G. Tkačik,et al.  Adaptation to Changes in Higher-Order Stimulus Statistics in the Salamander Retina , 2014, PloS one.

[8]  L. Vosshall,et al.  Functional conservation of an insect odorant receptor gene across 250 million years of evolution , 2005, Current Biology.

[9]  Yuguo Yu,et al.  Dynamical mechanisms underlying contrast gain control in single neurons. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  U. Alon,et al.  The incoherent feedforward loop can provide fold-change detection in gene regulation. , 2009, Molecular cell.

[11]  The evolution of insect flight: implications for the evolution of the nervous system. , 1997, Brain, behavior and evolution.

[12]  R. Cardé,et al.  Spatial and temporal structures of pheromone plumes in fields and forests , 2000 .

[13]  Claudio Altafini,et al.  A dynamical feedback model for adaptation in the olfactory transduction pathway. , 2012, Biophysical journal.

[14]  H. Berg,et al.  A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli , 2010, Molecular systems biology.

[15]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[16]  Massimo Vergassola,et al.  ‘Infotaxis’ as a strategy for searching without gradients , 2007, Nature.

[17]  R. C. Gerkin,et al.  High-speed odor transduction and pulse tracking by insect olfactory receptor neurons , 2014, Proceedings of the National Academy of Sciences.

[18]  D. A. Burkhardt,et al.  Light adaptation and photopigment bleaching in cone photoreceptors in situ in the retina of the turtle , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Natalie M Bernat,et al.  Computations underlying Drosophila photo-taxis, odor-taxis, and multi-sensory integration , 2015, eLife.

[20]  Benjamin de Bivort,et al.  Determinants of the Drosophila odorant receptor pattern. , 2012, Developmental cell.

[21]  Pamela Reinagel,et al.  Contrast adaptation in a nonadapting LGN model. , 2007, Journal of neurophysiology.

[22]  Alberto Capurro,et al.  Non-linear blend coding in the moth antennal lobe emerges from random glomerular networks , 2012, Front. Neuroeng..

[23]  Tai Sing Lee,et al.  The role of spiking nonlinearity in contrast gain control and information transmission , 2005, Vision Research.

[24]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[25]  John R. Carlson,et al.  Intensity Invariant Dynamics and Odor-Specific Latencies in Olfactory Receptor Neuron Response , 2013, The Journal of Neuroscience.

[26]  M. Bazhenov,et al.  Classification of odorants across layers in locust olfactory pathway. , 2016, Journal of neurophysiology.

[27]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[28]  John Murtis,et al.  Odor Plumes and How Insects Use Them , 1992 .

[29]  E. R. Rumbo,et al.  Adaptation processes in insect olfactory receptors - their relation to transduction and orientation , 1986 .

[30]  Lea Goentoro,et al.  Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. , 2009, Molecular cell.

[31]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[32]  M. Dickinson,et al.  Free-flight responses of Drosophila melanogaster to attractive odors , 2006, Journal of Experimental Biology.

[33]  Matthieu Louis,et al.  A circuit supporting concentration-invariant odor perception in Drosophila , 2009, Journal of biology.

[34]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[35]  F. Rieke Temporal Contrast Adaptation in Salamander Bipolar Cells , 2001, The Journal of Neuroscience.

[36]  Aurel A. Lazar,et al.  System identification of Drosophila olfactory sensory neurons , 2011, Journal of Computational Neuroscience.

[37]  J. Reisert,et al.  Adaptation of the odour‐induced response in frog olfactory receptor cells , 1999, The Journal of physiology.

[38]  Parvez Ahammad,et al.  Dynamical feature extraction at the sensory periphery guides chemotaxis , 2015, eLife.

[39]  Adrienne L. Fairhall,et al.  Intrinsic Gain Modulation and Adaptive Neural Coding , 2008, PLoS Comput. Biol..

[40]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[41]  M. Vergassola,et al.  Odor Landscapes in Turbulent Environments , 2014, 1411.3507.

[42]  Ernst Heinrich Weber,et al.  De pulsu, resorptione, auditu et tactu. Annotationes anatomicae et physiologicae , 1834 .

[43]  Shawn R. Olsen,et al.  Lateral presynaptic inhibition mediates gain control in an olfactory circuit , 2008, Nature.

[44]  Mason Klein,et al.  Reverse-correlation analysis of navigation dynamics in Drosophila larva using optogenetics , 2015, bioRxiv.

[45]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[46]  Dmitry Rinberg,et al.  Multiple perceptible signals from a single olfactory glomerulus , 2014, Nature Neuroscience.

[47]  A. Fairhall,et al.  Timescales of Inference in Visual Adaptation , 2009, Neuron.

[48]  J. Feder,et al.  Receptor expression and sympatric speciation: unique olfactory receptor neuron responses in F1 hybrid Rhagoletis populations , 2006, Journal of Experimental Biology.

[49]  Katherine I. Nagel,et al.  Synaptic and circuit mechanisms promoting broadband transmission of olfactory stimulus dynamics , 2014, Nature Neuroscience.

[50]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[51]  John R. Carlson,et al.  Functional diversity among sensory receptors in a Drosophila olfactory circuit , 2013, Proceedings of the National Academy of Sciences.

[52]  Edward N. Pugh,et al.  Physiological Features of the S- and M-cone Photoreceptors of Wild-type Mice from Single-cell Recordings , 2006, The Journal of general physiology.

[53]  Peter J. Clyne,et al.  Odor Coding in a Model Olfactory Organ: TheDrosophila Maxillary Palp , 1999, The Journal of Neuroscience.

[54]  J. Peacock Two-dimensional goodness-of-fit testing in astronomy , 1983 .

[55]  D. Ringach,et al.  The Operating Point of the Cortex: Neurons as Large Deviation Detectors , 2007, The Journal of Neuroscience.

[56]  Michael H. Dickinson,et al.  Plume-Tracking Behavior of Flying Drosophila Emerges from a Set of Distinct Sensory-Motor Reflexes , 2014, Current Biology.

[57]  Matthew C Smear,et al.  Perception of sniff phase in mouse olfaction , 2011, Nature.

[58]  Shawn R. Olsen,et al.  Divisive Normalization in Olfactory Population Codes , 2010, Neuron.

[59]  Matthew C Smear,et al.  Precise olfactory responses tile the sniff cycle , 2011, Nature Neuroscience.

[60]  Aravinthan D. T. Samuel,et al.  The wiring diagram of a glomerular olfactory system , 2016, bioRxiv.

[61]  K. Kaissling,et al.  Chemo-electrical transduction in insect olfactory receptors. , 1986, Annual review of neuroscience.

[62]  S. Helfand,et al.  Isolation and characterization of an olfactory mutant in Drosophila with a chemically specific defect. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Li Yan McCurdy,et al.  Presynaptic GABA Receptors Mediate Temporal Contrast Enhancement in Drosophila Olfactory Sensory Neurons and Modulate Odor-Driven Behavioral Kinetics , 2016, eNeuro.

[64]  Adrienne L. Fairhall,et al.  Single Neuron Computation: From Dynamical System to Feature Detector , 2006, Neural Computation.

[65]  Marie E. Burns,et al.  Dynamics of Cyclic GMP Synthesis in Retinal Rods , 2002, Neuron.

[66]  Katherine I. Nagel,et al.  Biophysical mechanisms underlying olfactory receptor neuron dynamics , 2010, Nature Neuroscience.

[67]  John R. Carlson,et al.  Coding of Odors by a Receptor Repertoire , 2006, Cell.

[68]  Katherine I Nagel,et al.  Mechanisms Underlying Population Response Dynamics in Inhibitory Interneurons of the Drosophila Antennal Lobe , 2016, The Journal of Neuroscience.

[69]  J. B. Demb,et al.  Contrast Adaptation in Subthreshold and Spiking Responses of Mammalian Y-Type Retinal Ganglion Cells , 2005, The Journal of Neuroscience.

[70]  Rava Azeredo da Silveira,et al.  Dynamical Adaptation in Photoreceptors , 2013, PLoS Comput. Biol..

[71]  R. Morris Foundations of cellular neurophysiology , 1996 .

[72]  L. Abbott,et al.  Generating sparse and selective third-order responses in the olfactory system of the fly , 2010, Proceedings of the National Academy of Sciences.

[73]  Terrence J. Sejnowski,et al.  Model of Cellular and Network Mechanisms for Odor-Evoked Temporal Patterning in the Locust Antennal Lobe , 2001, Neuron.

[74]  Kerry J. Kim,et al.  Temporal Contrast Adaptation in the Input and Output Signals of Salamander Retinal Ganglion Cells , 2001, The Journal of Neuroscience.

[75]  Alberto Capurro,et al.  Stimulus and Network Dynamics Collide in a Ratiometric Model of the Antennal Lobe Macroglomerular Complex , 2012, PloS one.

[76]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Katherine I. Nagel,et al.  Temporal Processing and Adaptation in the Songbird Auditory Forebrain , 2006, Neuron.

[78]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[79]  F. Rieke,et al.  Light adaptation in cone vision involves switching between receptor and post-receptor sites , 2007, Nature.

[80]  R. Cardé,et al.  Navigational Strategies Used by Insects to Find Distant, Wind-Borne Sources of Odor , 2008, Journal of Chemical Ecology.

[81]  Gordon M. Shepherd,et al.  Perception of Odors Linked to Precise Timing in the Olfactory System , 2014, PLoS biology.

[82]  A. Fairhall,et al.  Fractional differentiation by neocortical pyramidal neurons , 2008, Nature Neuroscience.

[83]  A. Hodgkin,et al.  Changes in time scale and sensitivity in turtle photoreceptors , 1974, The Journal of physiology.

[84]  J. Carlson,et al.  Olfactory Adaptation Depends on the Trp Ca2+Channel in Drosophila , 1999, The Journal of Neuroscience.

[85]  Jon Cafaro Multiple sites of adaptation lead to contrast encoding in the Drosophila olfactory system , 2016, Physiological reports.

[86]  P. Cluzel,et al.  Relationship between cellular response and behavioral variability in bacterial chemotaxis , 2007, Proceedings of the National Academy of Sciences.

[87]  W. Wildman,et al.  Theoretical Neuroscience , 2014 .

[88]  M. Carandini,et al.  The Statistical Computation Underlying Contrast Gain Control , 2006, The Journal of Neuroscience.

[89]  G. Hasan,et al.  The inositol 1,4,5-trisphosphate receptor is required for maintenance of olfactory adaptation in Drosophila antennae. , 2000, Journal of neurobiology.

[90]  Dawnis M. Chow,et al.  Flies Require Bilateral Sensory Input to Track Odor Gradients in Flight , 2009, Current Biology.

[91]  R. R. Riesz Differential Intensity Sensitivity of the Ear for Pure Tones , 1928 .

[92]  C. C. Pratt,et al.  The Weber ratio for intensive discrimination. , 1936 .

[93]  G. Fechner Elemente der Psychophysik , 1998 .

[94]  John R. Carlson,et al.  Odor Coding in the Drosophila Antenna , 2001, Neuron.

[95]  Michael J. Berry,et al.  Selectivity for multiple stimulus features in retinal ganglion cells. , 2006, Journal of neurophysiology.

[96]  Monica L. Skoge,et al.  Chemical sensing by nonequilibrium cooperative receptors. , 2013, Physical review letters.

[97]  A. Gelperin,et al.  Olfactory coding with all-or-nothing glomeruli. , 2007, Journal of neurophysiology.

[98]  Shawn R. Olsen,et al.  Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations , 2007, Nature Neuroscience.

[99]  R. Shapley,et al.  The effect of contrast on the transfer properties of cat retinal ganglion cells. , 1978, The Journal of physiology.

[100]  Roger C. Hardie,et al.  Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly , 1978, Journal of comparative physiology.

[101]  Bill S Hansson,et al.  Evolution of insect olfactory receptors , 2014, eLife.

[102]  Masato Okada,et al.  Mechanisms of Maximum Information Preservation in the Drosophila Antennal Lobe , 2010, PloS one.

[103]  J J Hopfield,et al.  Olfactory computation and object perception. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[104]  P Kuyper,et al.  Triggered correlation. , 1968, IEEE transactions on bio-medical engineering.

[105]  Bill S. Hansson,et al.  Insect Odorant Response Sensitivity Is Tuned by Metabotropically Autoregulated Olfactory Receptors , 2013, PloS one.

[106]  James M. Jeanne,et al.  Convergence, Divergence, and Reconvergence in a Feedforward Network Improves Neural Speed and Accuracy , 2015, Neuron.

[107]  S. S. Stevens On the psychophysical law. , 1957, Psychological review.

[108]  John Murlis,et al.  Measurement of Odor-Plume Structure in a Wind Tunnel Using a Photoionization Detector and a Tracer Gas , 2002 .

[109]  Jeffrey A. Riffell,et al.  Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment , 2008, Journal of Chemical Ecology.

[110]  J. Howard,et al.  Response of an insect photoreceptor: a simple log-normal model , 1981, Nature.

[111]  Maxim Bazhenov,et al.  Using the Structure of Inhibitory Networks to Unravel Mechanisms of Spatiotemporal Patterning , 2011, Neuron.

[112]  Maxim Bazhenov,et al.  Feed-Forward versus Feedback Inhibition in a Basic Olfactory Circuit , 2015, PLoS Comput. Biol..

[113]  Yuhai Tu,et al.  Distinct signaling of Drosophila chemoreceptors in olfactory sensory neurons , 2016, Proceedings of the National Academy of Sciences.