Mineral, thermal and deep groundwater of Hesse, Germany

Abstract. The composition of mineral, thermal or deep groundwaters is of interest for several geotechnical applications, such as drinking water supply, spas or geothermal energy. A verified and reliable knowledge of temperature, pH, hydrochemical composition and other parameters is crucial to extract fluids with as few technical problems as possible and exploit groundwater reservoirs economically and environmentally sustainable. However, at sites where empirical data are lacking, the correct prediction of fluid properties is often difficult, resulting in considerable economic risks. Here we present the first comprehensive and publicly available database of mineral, thermal and deep groundwaters of Hesse compiled from published and own data. Presently, it contains 1035 datasets from 560 different springs or wells sampled since 1810. A dataset consists of metadata like location, altitude, depth, rock type or stratigraphic unit, information on the water type, references, physical-chemical parameters, concentrations of major, minor and trace elements, content of dissolved and free gases as well as isotope data. The dataset allows the evaluation of time series and distribution of groundwater properties both laterally and vertically. We show a simple statistical evaluation based on the five major hydrogeological regions of Hesse. Our database can be used to re-evaluate genesis and circulation of deep groundwaters, to estimate reservoir temperatures with a solution geothermometer, or to assess groundwater ages by means of isotope data. It can also be useful for a first conception of deep geothermal utilizations. In future, an update and extension of the database is intended.

[1]  I. Sass,et al.  Multimethod exploration of the hydrothermal reservoir in Bad Soden-Salmünster, Germany , 2018, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften.

[2]  I. Sass,et al.  Ausbreitung und Vermischung geogener, kohlendioxidführender Thermalsole in oberflächennahem Grundwasser, Bad Nauheim , 2016, Grundwasser.

[3]  C. Innocent,et al.  Major geochemical characteristics of geothermal brines from the Upper Rhine Graben granitic basement with constraints on temperature and circulation , 2016 .

[4]  I. Stober,et al.  Hydraulic and hydrochemical properties of deep sedimentary reservoirs of the Upper Rhine Graben, Europe , 2015 .

[5]  Bernd Leßmann,et al.  Eine „typische“ hydrogeologische Systembeschreibung für den Buntsandstein , 2014, Grundwasser.

[6]  M. Bode,et al.  Post-Variscan hydrothermal vein mineralization, Taunus, Rhenish Massif (Germany): Constraints from stable and radiogenic isotope data , 2012 .

[7]  T. Wagner,et al.  Source and origin of active and fossil thermal spring systems, northern Upper Rhine Graben, Germany , 2012 .

[8]  F. Herrmann,et al.  Development of a conceptual hydrogeological model for the evaluation of residence times of water in soil and groundwater: the state of Hesse case study, Germany , 2012, Environmental Earth Sciences.

[9]  I. Stober,et al.  Hydrochemical Groundwater Evolution in the Bunter Sandstone Sequence of the Odenwald Mountain Range, Germany: A Laboratory and Field Study , 2011 .

[10]  A. Boyce,et al.  Barite–pyrite mineralization of the Wiesbaden thermal spring system, Germany: a 500‐kyr record of geochemical evolution , 2005 .

[11]  G. Michel Mineral- und Thermalwässer - Allgemeine Balneogeologie , 1997 .

[12]  Walter Carlé Rezente und fossile Mineral- und Thermalwässer im Oberrheintal-Graben und seiner weiteren Umgebung , 1958 .

[13]  C. Fresenius Neue chemische Untersuchung des Kochbrunnens zu Wiesbaden und Vergleichung der Resultate mit den 1849 von mir erhaltenen , 1886 .

[14]  I. Sass,et al.  Database of Mineral, Thermal and Deep Groundwaters of Hesse, Germany , 2020 .

[15]  T. Reinsch,et al.  The PetroPhysical Property Database (P3) – a global compilation of lab-measured rock properties , 2020 .

[16]  J. Reinecker,et al.  EXPERIENCES AND CHALLENGES IN GEOTHERMAL EXPLORATION IN THE UPPER RHINE GRABEN , 2019 .

[17]  K. Wiegand,et al.  Die Hydrogeologie des vulkanischen Vogelsberges , 2001 .

[18]  J. Liebig Zusammensetzung der Mineralquelle No. XIX in Soden , 1839 .

[19]  J. Liebig Untersuchung der Mineralquellen zu Soden und Bemerkungen über die Wirkung der Salze auf den Organismus , 1839 .

[20]  J. Liebig Chemische Untersuchung der Mineralquelle zu Schwalheim bei Friedberg , 1839 .