Deoxidation of gallium arsenide surface via silicon overlayer: A study on the evolution of the interface state density

The GaAs surface with the native oxide formed by wet etching has been gradually deoxidized via evaporation of a silicon overlayer. Both chemical and electronic properties of such structures have been examined by x-ray photoelectron spectroscopy (XPS) and “XPS under biases,” respectively. The latter technique enables a direct assessment of the interface state density of insulator∕semiconductor interfaces. We have concluded that gap states incident to the native oxide∕GaAs interface have annihilated due to replacement of Ga–O bonds by Ga–Si and As–Si bonds.

[1]  H. Morkoç,et al.  Investigations of the Si3N4/Si/n‐GaAs insulator‐semiconductor interface with low interface trap density , 1992 .

[2]  P. Pianetta,et al.  Surface and interface states on GaAs(110): Effects of atomic and electronic rearrangements , 1977 .

[3]  J. Waldrop,et al.  Wide range of Schottky barrier height for metal contacts to GaAs controlled by Si interface layers , 1988 .

[4]  M. Gendry,et al.  Oxides on GaAs and InAs surfaces: An x-ray-photoelectron-spectroscopy study of reference compounds and thin oxide layers. , 1994, Physical review. B, Condensed matter.

[5]  M. Nathan,et al.  Silicon‐induced local interface dipole in Al/GaAs(001) Schottky diodes , 1994 .

[6]  Margaritondo,et al.  Artificial band discontinuities at GaAs homojunctions. , 1993, Physical review. B, Condensed matter.

[7]  N. McIntyre,et al.  Studies of the UV/Ozone oxidation of GaAs using angle‐resolved x‐ray photoelectron spectroscopy , 1990 .

[8]  Chambers,et al.  Structure and band bending at Si/GaAs(001)-(2 x 4) interfaces. , 1993, Physical review. B, Condensed matter.

[9]  A. Finnefrock,et al.  Temperature‐dependent chemical and electronic structure of reconstructed GaAs (100) surfaces , 1992 .

[10]  H. Morkoç,et al.  Electrical characteristics of Si3N4/Si/GaAs metal‐insulator‐semiconductor capacitor , 1991 .

[11]  F. J. Himpsel,et al.  Microscopic structure of the SiO 2 /Si interface , 1988 .

[12]  L. Sorba,et al.  Tunable Schottky barriers and the nature of Si interface layers in Al/GaAs(001) diodes , 1996 .

[13]  L. Sorba,et al.  Epitaxial growth and interface parameters of Si layers on GaAs(001) and AlAs(001) substrates , 1991 .

[14]  James W. Mayer,et al.  OUTDIFFUSION THROUGH SILICON OXIDE AND SILICON NITRIDE LAYERS ON GALLIUM ARSENIDE , 1970 .

[15]  D. Briggs,et al.  Practical surface analysis: By auger and x-ray photoelectron spectroscopy , 1983 .

[16]  Hideki Hasegawa,et al.  Unified disorder induced gap state model for insulator–semiconductor and metal–semiconductor interfaces , 1986 .

[17]  M. Passlack,et al.  Quasistatic and high frequency capacitance–voltage characterization of Ga2O3–GaAs structures fabricated by in situ molecular beam epitaxy , 1996 .

[18]  K. Cheng,et al.  Microstructure and wet oxidation of low-temperature-grown amorphous (Al/Ga,As) , 2001 .

[19]  Control of GaAs Schottky barrier height by formation of a thin off‐stoichiometric GaAs interlayer grown by low‐temperature molecular beam epitaxy , 1992 .

[20]  J. Waldrop,et al.  Variation of n‐GaAs (100) interface Fermi level by Ge and Si overlayers , 1987 .

[21]  M. Passlack,et al.  IN SITU FABRICATED GA2O3-GAAS STRUCTURES WITH LOW INTERFACE RECOMBINATION VELOCITY , 1995 .

[22]  M. Seah,et al.  Auger and x-ray photoelectron spectroscopy , 1990 .

[23]  R. Opila,et al.  Thermodynamic and photochemical stability of low interface state density Ga2O3–GaAs structures fabricated by in situ molecular beam epitaxy , 1996 .

[24]  C. Su,et al.  Oxygen adsorption on the GaAs(110) surface , 1980 .

[25]  S. Hattangady,et al.  GaAs MIS structures with SiO2 using a thin silicon interlayer , 1988 .

[26]  Hideki Hasegawa,et al.  Pinning-free GaAs MIS structures with Si interface control layers formed on (4 × 6) reconstructed (0 0 1) surface , 2003 .

[27]  J. E. Griffiths,et al.  Oxide‐Substrate and Oxide‐Oxide Chemical Reactions in Thermally Annealed Anodic Films on GaSb , GaAs , and GaP , 1980 .

[28]  J. Batey,et al.  Unpinned GaAs MOS capacitors and transistors , 1988, IEEE Electron Device Letters.

[29]  W. Spicer,et al.  Systematics of interfacial chemical reactions on InP(110) , 1984 .

[30]  H. Ikoma,et al.  X-Ray Photoelectron Spectroscopic Analysis of the Oxide of GaAs , 1992 .

[31]  Seiichi Iwata,et al.  Electron spectroscopic analysis of the SiO2/Si system and correlation with metal–oxide–semiconductor device characteristics , 1996 .

[32]  H. Ruda,et al.  The origin of Ga2O3 passivation for reconstructed GaAs(001) surfaces , 1998 .

[33]  Watanabe,et al.  Growth of Si on different GaAs surfaces: A comparative study. , 1996, Physical review. B, Condensed matter.

[34]  K. Horn,et al.  Thermal effects on the growth of SiO2 on GaAs(100) by reduction of native oxides , 1993 .

[35]  G. Margaritondo,et al.  Unpinning of the Au/GaAs interfacial Fermi level by means of ultrathin undoped silicon interlayer inclusion , 2000 .

[36]  J. Kwo,et al.  Low interface state density oxide‐GaAs structures fabricated by in situ molecular beam epitaxy , 1996 .

[37]  M. Nathan,et al.  Modification of Al/GaAs(001) Schottky barriers by means of heterovalent interface layers , 1994 .