Solving multi-mode resource-constrained project scheduling problem using two multi objective evolutionary algorithms

The aim of this research is to present a new mathematical model for a multi-mode resource-constrained project scheduling problem (MRCPSP) with discounted cash flows. The objective is to minimize the project makespan and maximize the net present value (NPV), simultaneously, which are the two common objectives of this problem in the literature. Two evolutionary algorithms, NSGA-II and MOPSO are applied to find the set of Pareto solutions for this bi-objective scheduling problem. Furthermore, a new policy is proposed to have feasible solutions for both algorithms. To show the superiority and applicability of the algorithms, different metrics are applied and the graphical comparisons are also considered. Finally, the computational results illustrate the superior performance of the NSGA-II algorithm with regard to the proposed metrics.   Key words: Resource-constraint, multi-mode project scheduling, net present value, makespan, evolutionary multi objective optimization.

[1]  Fayez F. Boctor,et al.  Resource-constrained project scheduling by simulated annealing , 1996 .

[2]  Grzegorz Waligóra,et al.  Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models , 2005, Eur. J. Oper. Res..

[3]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[4]  Jan Węglarz,et al.  Project scheduling : recent models, algorithms, and applications , 1999 .

[5]  Rainer Kolisch,et al.  Experimental investigation of heuristics for resource-constrained project scheduling: An update , 2006, Eur. J. Oper. Res..

[6]  Jan Węglarz,et al.  Knowledge-based Multiobjective Project Scheduling Problems , 1999 .

[7]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[8]  R. Tavakkoli-Moghaddam,et al.  A NEW BI-OBJECTIVE MODEL FOR A MULTI-MODE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM WITH DISCOUNTED CASH FLOWS AND FOUR PAYMENT MODELS , 2008 .

[9]  Sönke Hartmann,et al.  Project scheduling with multiple modes: A comparison of exact algorithms , 1998 .

[10]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[11]  Chang Sup Sung,et al.  A project activity scheduling problem with net present value measure , 1994 .

[12]  Sabah U. Randhawa,et al.  Resource-constrained project scheduling with renewable and non-renewable resources and time-resource tradeoffs , 1997 .

[13]  Mario Vanhoucke,et al.  A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem , 2010, Eur. J. Oper. Res..

[14]  Rubén Ruiz,et al.  Solving the Multi-Mode Resource-Constrained Project Scheduling Problem with genetic algorithms , 2003, J. Oper. Res. Soc..

[15]  Jan Karel Lenstra,et al.  Scheduling subject to resource constraints: classification and complexity , 1983, Discret. Appl. Math..

[16]  Christian Artigues The Resource‐Constrained Project Scheduling Problem , 2010 .

[17]  Jirí Benes,et al.  On neural networks , 1990, Kybernetika.

[18]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[19]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[20]  R Tavakoli Moghadam,et al.  A New Bi-Objective Model for a Multi-Mode Resource-Constrained Project Scheduling Problem with Discounted Cash Flows and four Payment Models , 2008 .

[21]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[22]  Grzegorz Waligóra,et al.  Discrete-continuous project scheduling with discounted cash flows - A tabu search approach , 2008, Comput. Oper. Res..

[23]  Roman Słowiński,et al.  DSS for multiobjective project scheduling , 1994 .

[24]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[25]  Philippe Fortemps,et al.  A hybrid rank-based evolutionary algorithm applied to multi-mode resource-constrained project scheduling problem , 2010, Eur. J. Oper. Res..

[26]  Grzegorz Waligóra,et al.  Project scheduling with finite or infinite number of activity processing modes - A survey , 2011, Eur. J. Oper. Res..

[27]  Chia-Chi Sun,et al.  A hybrid performance evaluation system for notebook computer ODM companies , 2011 .

[28]  Masao Mori,et al.  A genetic algorithm for multi-mode resource constrained project scheduling problem , 1997, Eur. J. Oper. Res..

[29]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[30]  Toshihide Ibaraki,et al.  Formulation and Tabu Search Algorithm for the Resource Constrained Project Scheduling Problem , 2002 .

[31]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[32]  Grzegorz Waligóra,et al.  Simulated Annealing for Multi-Mode Resource-Constrained Project Scheduling , 2001, Ann. Oper. Res..

[33]  K. Bouleimen,et al.  A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version , 2003, Eur. J. Oper. Res..

[34]  Gündüz Ulusoy,et al.  Four Payment Models for the Multi-Mode Resource Constrained Project Scheduling Problem with Discounted Cash Flows , 2001, Ann. Oper. Res..

[35]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[36]  Linet Özdamar,et al.  A genetic algorithm approach to a general category project scheduling problem , 1999, IEEE Trans. Syst. Man Cybern. Part C.

[37]  Liu Zhen-yuan,et al.  Heuristic algorithm for RCPSP with the objective of minimizing activities' cost , 2006 .

[38]  Federico Barber,et al.  Multi-mode resource constrained project scheduling: scheduling schemes, priority rules and mode selection rules , 2006, Inteligencia Artif..

[39]  Aravind Seshadri,et al.  A FAST ELITIST MULTIOBJECTIVE GENETIC ALGORITHM: NSGA-II , 2000 .

[40]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[41]  Stefan Voß,et al.  Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application , 2007 .

[42]  Bassem Jarboui,et al.  A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems , 2008, Appl. Math. Comput..

[43]  Grzegorz Waligóra,et al.  Tabu search for multi-mode resource-constrained project scheduling with schedule-dependent setup times , 2008, Eur. J. Oper. Res..

[44]  Sönke Hartmann,et al.  A survey of variants and extensions of the resource-constrained project scheduling problem , 2010, Eur. J. Oper. Res..