Projection bodies and valuations

Let Π be the projection operator, which maps every polytope to its projection body. It is well known that Π maps the set of polytopes, Pn, in Rn into Pn, that it is a valuation, and that for every P∈Pn, ΠP is affinely associated to P. It is shown that these properties characterize the projection operator Π. This proves a conjecture by Lutwak.

[1]  Bernd Sturmfels,et al.  Oriented Matroids: Notation , 1999 .

[2]  Rolf Schneider,et al.  Simple valuations on convex bodies , 1996 .

[3]  P. McMullen Valuations and Dissections , 1993 .

[4]  Apostolos Giannopoulos,et al.  Isotropic surface area measures , 1999 .

[5]  S. Alesker On P. McMullen's Conjecture on Translation Invariant Valuations , 2000 .

[6]  Horst Martini,et al.  Convex polytopes whose projection bodies and difference sets are polars , 1990, Discret. Comput. Geom..

[7]  S. Alesker Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture , 2001 .

[8]  E. Bolker A class of convex bodies , 1969 .

[9]  Kurt Leichtweiss,et al.  Affine geometry of convex bodies , 1998 .

[10]  Jörg M. Wills,et al.  Handbook of Convex Geometry , 1993 .

[11]  S. Alesker Description of Continuous Isometry Covariant Valuations on Convex Sets , 1999 .

[12]  G. Ziegler Lectures on Polytopes , 1994 .

[13]  E. Lutwak Selected Affine Isoperimetric Inequalities , 1993 .

[14]  M. Reitzner,et al.  A Characterization of Affine Surface Area , 1999 .

[15]  Peter Gritzmann,et al.  Polytope Projection and Projection Polytopes , 1996, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[16]  B. Sturmfels Oriented Matroids , 1993 .

[17]  Star Valuations and Dual Mixed Volumes , 1996 .

[18]  Jörg M. Wills,et al.  Convexity and its applications , 1983 .

[19]  Daniel A. Klain A short proof of Hadwiger's characterization theorem , 1995 .

[20]  P. Goodey,et al.  Zonoids and Generalisations , 1993 .

[21]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[22]  Daniel A. Klain Invariant Valuations on Star-Shaped Sets , 1997 .

[23]  Daniel A. Klain,et al.  Introduction to Geometric Probability , 1997 .

[24]  W. Weil,et al.  Zonoids and Related Topics , 1983 .

[25]  E. Lutwak,et al.  A new affine invariant for polytopes and Schneider’s projection problem , 2001 .

[26]  Günter M. Ziegler,et al.  Oriented Matroids , 2017, Handbook of Discrete and Computational Geometry, 2nd Ed..

[27]  Gaoyong Zhang Restricted chord projection and affine inequalities , 1991 .

[28]  R. Schneider Zu einem Problem von Shephard über die Projektionen konvexer Körper , 1967 .

[29]  Continuous rotation invariant valuations on convex sets , 1999, math/9905204.

[30]  R. Gardner Geometric Tomography: Parallel X-rays of planar convex bodies , 2006 .

[31]  H. Hadwiger Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .

[32]  E. Lutwak Inequalities for mixed projection bodies , 1993 .

[33]  Daniel A. Klain Even valuations on convex bodies , 1999 .

[34]  Rolf Schneider,et al.  Equivariant endomorphisms of the space of convex bodies , 1974 .

[35]  Gaoyong Zhang The affine Sobolev inequality , 1999 .