MEASURING EJECTA VELOCITY IMPROVES TYPE Ia SUPERNOVA DISTANCES

We use a sample of 121 spectroscopically normal Type Ia supernovae (SNe Ia) to show that their intrinsic color is correlated with their ejecta velocity, as measured from the blueshift of the Si II λ6355 feature near maximum brightness, v Si II . The SN Ia sample was originally used by Wang et al. to show that the relationship between color excess and peak magnitude, which in the absence of intrinsic color differences describes a reddening law, was different for two subsamples split by v Si II (defined as Normal and High Velocity). We verify this result, but find that the two subsamples have the same reddening law when extremely reddened events (E(B – V)>0.35 mag) are excluded. We also show that (1) the High-Velocity subsample is offset by ~0.06 mag to the red from the Normal subsample in the (B max – V max)-MV plane, (2) the B max – V max cumulative distribution functions of the two subsamples have nearly identical shapes, but the High-Velocity subsample is offset by ~0.07 mag to the red in B max – V max, and (3) the bluest High-Velocity SNe Ia are ~0.10 mag redder than the bluest Normal SNe Ia. Together, this evidence indicates a difference in intrinsic color for the subsamples. Accounting for this intrinsic color difference reduces the scatter in Hubble residuals from 0.190 mag to 0.130 mag for SNe Ia with AV 0.7 mag. The scatter can be further reduced to 0.109 mag by exclusively using SNe Ia from the Normal subsample. Additionally, this result can at least partially explain the anomalously low values of RV found in large SN Ia samples. We explain the correlation between ejecta velocity and color as increased line blanketing in the High-Velocity SNe Ia, causing them to become redder. We discuss some implications of this result, and stress the importance of spectroscopy for future SN Ia cosmology surveys, with particular focus on the design of WFIRST.

[1]  P. Nugent,et al.  On the relative frequencies of spectroscopically normal and peculiar type Ia supernovae , 1993 .

[2]  S. E. Woosley,et al.  Type?Ia Supernova Light Curves , 2007 .

[3]  J. Sollerman,et al.  NEBULAR SPECTRA AND EXPLOSION ASYMMETRY OF TYPE Ia SUPERNOVAE , 2009, 0911.5484.

[4]  R. Kirshner,et al.  SN 2006bt: A PERPLEXING, TROUBLESOME, AND POSSIBLY MISLEADING TYPE Ia SUPERNOVA , 2009, 0912.0263.

[5]  L. Ho,et al.  The subluminous spectroscopically peculiar type Ia supernova 1991bg in the elliptical galaxy NGC 4374 , 1992 .

[6]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[7]  D. Schlegel,et al.  The peculiar type Ia SN 1991T : detonation of a white dwarf ? , 1992 .

[8]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[9]  N. B. Suntzeff,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[10]  W. M. Wood-Vasey,et al.  SN 2008ha: AN EXTREMELY LOW LUMINOSITY AND EXCEPTIONALLY LOW ENERGY SUPERNOVA , 2009, 0902.2794.

[11]  M. Phillips,et al.  Evidence for a Spectroscopic Sequence among Type Ia Supernovae , 1995, astro-ph/9510004.

[12]  Spectropolarimetric Diagnostics of Thermonuclear Supernova Explosions , 2006, Science.

[13]  A. Riess,et al.  Uniformity of (V–Near-Infrared) Color Evolution of Type Ia Supernovae and Implications for Host Galaxy Extinction Determination , 1999, astro-ph/9912219.

[14]  E. Oran,et al.  Three-dimensional Delayed-Detonation Model of Type Ia Supernovae , 2004, astro-ph/0409598.

[15]  M. Reinecke,et al.  Three-dimensional simulations of type Ia supernovae , 2002, astro-ph/0206459.

[16]  Ariel Goobar,et al.  Low RV from Circumstellar Dust around Supernovae , 2008, 0809.1094.

[17]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[18]  R. Kirshner,et al.  Analysis of the photospheric epoch spectra of type 1a supernovae SN 1990N and SN 1991T , 1992 .

[19]  M. Sullivan,et al.  SiFTO: An Empirical Method for Fitting SN Ia Light Curves , 2008, 0803.3441.

[20]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[21]  J. Maund,et al.  THE UNIFICATION OF ASYMMETRY SIGNATURES OF TYPE Ia SUPERNOVAE , 2010, 1008.0651.

[22]  M. S. Burns,et al.  SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.

[23]  Kevin Krisciunas,et al.  Optical and Near-Infrared Observations of the Highly Reddened, Rapidly Expanding Type Ia Supernova SN 2006X in M100 , 2007, 0708.0140.

[24]  Detonating Failed Deflagration Model of Thermonuclear Supernovae. II. Comparison to Observations , 2006, astro-ph/0612198.

[25]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[26]  Evidence for Spectropolarimetric Diversity in Type Ia Supernovae , 2005, astro-ph/0506470.

[27]  J. Sollerman,et al.  An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae , 2010, Nature.

[28]  Armin Rest,et al.  CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA , 2009, 0901.4787.

[29]  Jan Peters,et al.  SN 1991bg - A type Ia supernova with a difference , 1993 .

[30]  S. Jha,et al.  Luminosity Indicators in the Ultraviolet Spectra of Type Ia Supernovae , 2008, 0803.1181.

[31]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[32]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[33]  Peter E. Nugent,et al.  The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star , 2006, Nature.

[34]  R. Foley,et al.  IMPROVED DISTANCES TO TYPE Ia SUPERNOVAE WITH TWO SPECTROSCOPIC SUBCLASSES , 2009, 0906.1616.

[35]  M. Turatto,et al.  The Diversity of Type Ia Supernovae: Evidence for Systematics? , 2005 .

[36]  S. E. Woosley,et al.  On the Origin of the Type Ia Supernova Width-Luminosity Relation , 2006, astro-ph/0609540.

[37]  S. E. Woosley,et al.  Carbon Ignition in Type Ia Supernovae. II. A Three-dimensional Numerical Model , 2005 .

[38]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[39]  S. E. Woosley,et al.  The diversity of type Ia supernovae from broken symmetries , 2009, Nature.

[40]  R. Kirshner,et al.  Do spectra improve distance measurements of Type Ia supernovae , 2010, 1012.0005.

[41]  P. Astier,et al.  SALT : a spectral adaptive light curve template for type Ia supernovae , 2005 .