Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration

[1] Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data are used to derive the modal mineralogy of spectrally distinct Martian low-albedo regions and to identify spatial trends in mineralogic assemblages. Results from this work are consistent with the major results of previous spectroscopic studies: (1) Plagioclase and clinopyroxene are the dominant minerals of most southern highlands regions, (2) the northern plains exhibit the lowest pyroxene abundance within Martian low-albedo regions, and (3) the highest concentrations of high-silica phase(s) are found in the northern plains, Solis Planum and a few southern high-latitude regions. Low-albedo regions may be classified into four units on the basis of relative abundances of plagioclase, pyroxene, and high-silica phase(s). Unit distributions between ±45° latitude exhibit moderate correlation with distinct provinces (e.g., Syrtis Major, Aonium Sinus) defined by large-scale morphology, elevation, and to some extent, surface age, suggesting that the spectral and compositional differences between these units are more strongly controlled by original bedrock mineralogy than by surface-atmosphere interactions and alteration. Syrtis Major exhibits a difference in mineralogy from the surrounding highlands suggesting a differing degree of fractional crystallization, assimilation, or source region composition. Areas with thick crust near the Tharsis Plateau exhibit lower abundances of olivine and greater plagioclase/pyroxene ratios than surrounding highland terrains, suggesting that magmas in this region may have undergone increased olivine fractionation. Regions where surface alteration is more likely to be the primary control on observed spectral signatures are the high-latitude areas (>45°), where globally, surfaces dominated by high-silica phase(s) are most commonly found.

[1]  D. H. Scott,et al.  Geologic map of the polar regions of Mars , 1987 .

[2]  Jutta Zipfel,et al.  Petrology and chemistry of the new shergottite Dar al Gani 476 , 2000 .

[3]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[4]  J. Michalski,et al.  Mineralogical constraints on the high-silica martian surface component observed by TES , 2005 .

[5]  M. Malin,et al.  Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.

[6]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[7]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[8]  V. Hamilton,et al.  Discrimination of glass and phyllosilicate minerals in thermal infrared data , 2005 .

[9]  C. Sotin,et al.  Composition of the Dust on Mars Derived from OMEGA Hyperspectral Images , 2006 .

[10]  R. Eggleton,et al.  Weathering of Basalt: Changes in Rock Chemistry and Mineralogy , 1987 .

[11]  A. McEwen,et al.  Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results , 2003, Science.

[12]  Maria T. Zuber,et al.  Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios , 2004 .

[13]  H. McSween,et al.  Petrology and origin of the shergottite meteorites , 1979 .

[14]  Falko Langenhorst,et al.  Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory* , 1994 .

[15]  Michael C. Malin,et al.  Channels on Mars , 1975 .

[16]  S. Wu,et al.  Developing forecasting charts for sunspot numbers , 1982 .

[17]  R. Rieder,et al.  Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer , 2004, Science.

[18]  Alan D. Howard,et al.  An Intense Terminal Epoch of Widespread Fluvial Activity on Early Mars: 2. Increased Runoff and Paleolake Development , 2005 .

[19]  William H. Farrand,et al.  Rocks of the Columbia Hills , 2006 .

[20]  Ronald Greeley,et al.  Geologic map of the eastern equatorial region of Mars , 1987 .

[21]  P. Christensen,et al.  Thermal infrared analysis of weathered granitic rock compositions in the Sacaton Mountains, Arizona: Implications for petrologic classifications from thermal infrared remote-sensing data , 2004 .

[22]  P. Christensen,et al.  Compositional heterogeneity of the ancient Martian crust: Analysis of Ares Vallis bedrock with THEMIS and TES data , 2005 .

[23]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[24]  S. Ruff,et al.  Formation of the hematite-bearing unit in Meridiani Planum: Evidence for deposition in standing water , 2004 .

[25]  M. Lindstrom,et al.  Comparison of the LEW88516 and ALHA77005 martian meteorites: Similar but distinct , 1994 .

[26]  M. Ramsey,et al.  Mineral abundance determination: Quantitative deconvolution of thermal emission spectra , 1998 .

[27]  Brian M. Hynek,et al.  New data reveal mature, integrated drainage systems on Mars indicative of past precipitation , 2003 .

[28]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[29]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[30]  Jeffrey R. Johnson,et al.  Characterization and petrologic interpretation of olivine‐rich basalts at Gusev Crater, Mars , 2006 .

[31]  Harry Y. McSween,et al.  Identification of quartzofeldspathic materials on Mars , 2004 .

[32]  R E Arvidson,et al.  Spectral Reflectance and Morphologic Correlations in Eastern Terra Meridiani, Mars , 2005, Science.

[33]  V. Hamilton Thermal infrared emission spectroscopy of the pyroxene mineral series , 2000 .

[34]  Bruce C. Kindel,et al.  Mapping compositional diversity on the surface of Mars: The Spectral Variance Index , 2006 .

[35]  S. Colman Chemical weathering of basalts and andesites; evidence from weathering rinds , 1982 .

[36]  R. Clark,et al.  Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .

[37]  R. Huguenin Mars - Chemical weathering as a massive volatile sink , 1976 .

[38]  J. Mustard,et al.  Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice , 2001, Nature.

[39]  Harry Y. McSween,et al.  Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars , 2002, Nature.

[40]  S. Morse Kiglapait Mineralogy III: Olivine Compositions and Rayleigh Fractionation Models , 1996 .

[41]  Maria T. Zuber,et al.  The crust and mantle of Mars , 2001, Nature.

[42]  P. Christensen,et al.  Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy 2. Application to Martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer , 2001 .

[43]  Ronald Greeley,et al.  Rate of wind abrasion on Mars , 1982 .

[44]  Paul G. Lucey,et al.  Thermal Infrared Spectroscopy of Experimentally Shocked Anorthosite and Pyroxenite , 2002 .

[45]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[46]  Alan D. Howard,et al.  An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits , 2005 .

[47]  S. Ruff Spectral evidence for zeolite in the dust on Mars , 2002 .

[48]  S. Erard,et al.  In situ compositions of Martian volcanics: Implications for the mantle , 1997 .

[49]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[50]  H. Y. McSween,et al.  Addendum: Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.

[51]  D. H. Scott,et al.  GEOLOGIC MAP OF THE WESTERN EQUATORIAL REGION OF MARS , 1986 .

[52]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[53]  Falko Langenhorst,et al.  Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience* , 1996 .

[54]  High Spectral Resolution Spectroscopy of Mars from 2 to 4 Microns: Surface Mineralogy and the Atmosphere , 2003 .

[55]  D. Rogers,et al.  Age relationship of basaltic and andesitic surface compositions on Mars: Analysis of high-resolution TES observations of the northern hemisphere , 2003 .

[56]  J. Bandfield,et al.  Planetary science (communication arising): Volcanism or aqueous alteration on Mars? , 2003, Nature.

[57]  P. Christensen,et al.  Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks , 1999 .

[58]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[59]  B. Lucchitta The Channels of Mars , 1982 .

[60]  S. McLennan Sedimentary silica on Mars , 2003 .

[61]  B. Hapke,et al.  Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols , 2005 .

[62]  Kris J. Becker,et al.  Shocked plagioclase signatures in Thermal Emission Spectrometer data of Mars , 2002 .

[63]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[64]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[65]  Harry Y. McSween,et al.  What we have learned about Mars from SNC meteorites , 1994 .

[66]  V. Sautter,et al.  Petrology and chemistry of the Picritic Shergottite North West Africa 1068 (NWA 1068) , 2002 .

[67]  Michael Bruce Wyatt,et al.  Global geologic context for rock types and surface alteration on Mars , 2004 .

[68]  Raymond E. Arvidson,et al.  Bounded Variable Least Squares -- Application of a Constrained Optimization Algorithm to the Analysis of TES Emissivity Spectra , 2003 .

[69]  C. Sagan Sandstorms and eolian erosion on Mars , 1973 .

[70]  K. Edgett,et al.  THE PARTICLE SIZE OF MARTIAN AEOLIAN DUNES , 1991 .

[71]  R E Arvidson,et al.  Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. , 2004, Science.

[72]  J. Bandfield,et al.  Multiple emission angle surface–atmosphere separations of thermal emission spectrometer data , 2001 .

[73]  Alain Soufflot,et al.  ISM observations of Mars and PHOBOS - First results , 1990 .

[74]  H. Y. McSween,et al.  Martian meteorite Dhofar 019: A new shergottite , 2002 .

[75]  Thomas G. Sharp,et al.  Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations for Martian surface mineralogy , 2003 .

[76]  T. Glotch,et al.  Geologic and mineralogic mapping of Aram Chaos: Evidence for a water-rich history , 2005 .

[77]  Steven A Hauck,et al.  New Perspectives on Ancient Mars , 2005, Science.

[78]  D. Ming,et al.  Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust , 2005, Nature.

[79]  J F Mustard,et al.  Seeing through the dust: martian crustal heterogeneity and links to the SNC meteorites , 1995, Science.

[80]  J. Mustard,et al.  Viscous flow features on the surface of Mars: Observations from high‐resolution Mars Orbiter Camera (MOC) images , 2003 .

[81]  R. Morris,et al.  Effect of precursor mineralogy on the thermal infrared emission spectra of hematite: Application to Martian hematite mineralization , 2004 .

[82]  Christophe Delacourt,et al.  Evidence for Precipitation on Mars from Dendritic Valleys in the Valles Marineris Area , 2004, Science.

[83]  S. Squyres,et al.  Identification of a 10-μm Silicate Absorption Feature in the Acidalia Region of Mars , 1997 .

[84]  R E Arvidson,et al.  Initial Results from the Mini-TES Experiment in Gusev Crater from the Spirit Rover , 2004, Science.

[85]  D. Ming,et al.  Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater , 2005, Nature.

[86]  J. Bandfield,et al.  Determination and interpretation of surface and atmospheric Miniature Thermal Emission Spectrometer spectral end‐members at the Meridiani Planum landing site , 2006 .

[87]  Stephane Erard,et al.  The surface of Syrtis Major - Composition of the volcanic substrate and mixing with altered dust and soil , 1993 .

[88]  K. Kwitter,et al.  Morphology and Composition of the Helix Nebula , 1999, astro-ph/9901060.

[89]  Scott M. McLennan,et al.  Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited , 2004 .

[90]  K. Edgett,et al.  Spectroscopic study of the Moses Lake dune field, Washington: Determination of compositional distributions and source lithologies , 2002 .

[91]  H. McSween,et al.  Petrogenesis of the Elephant Moraine A79001 meteorite Multiple magma pulses on the shergottite parent body , 1983 .

[92]  J. Michalski,et al.  Thermal emission spectroscopy of the silica polymorphs and considerations for remote sensing of Mars , 2003 .

[93]  D. A. Howard,et al.  A thermal emission spectral library of rock-forming minerals , 2000 .

[94]  J W Head,et al.  Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. , 2000, Science.

[95]  M. Zuber,et al.  Drainage basins and channel incision on Mars , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[96]  N. Barlow,et al.  The Martian impact cratering record. , 1992 .

[97]  William V. Boynton,et al.  Mapping Mars geochemically , 2010 .

[98]  John B. Adams,et al.  Mars - Interpretation of spectral reflectivity of light and dark regions. , 1969 .

[99]  V. Hamilton,et al.  Evidence for extensive, olivine-rich bedrock on Mars , 2005 .

[100]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[101]  Michael Bruce Wyatt,et al.  Constraints on the composition and petrogenesis of the Martian crust , 2003 .

[102]  P. Christensen,et al.  Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars , 2003 .

[103]  L. E. Nyquist,et al.  Constraints on Martian differentiation processes from RbSr and SmNd isotopic analyses of the basaltic shergottite QUE 94201 , 1997 .

[104]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[105]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[106]  P. Christensen,et al.  Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy , 2000 .

[107]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[108]  P. Christensen Formation of recent martian gullies through melting of extensive water-rich snow deposits , 2003, Nature.

[109]  Robert B. Singer,et al.  Mars surface composition from reflectance spectroscopy: A summary , 1979 .

[110]  J. Bell,et al.  Mars surface mineralogy from Hubble Space Telescope imaging during 1994–1995: Observations, calibration, and initial results , 1997 .

[111]  H. McSween,et al.  Re-evaluation of intercumulus liquid composition and oxidation state for the Shergotty meteorite , 1999 .

[112]  Stephane Erard,et al.  Spatial variations in composition of the Valles Marineris and Isidis Planitia regions of Mars derived from ISM data , 1991 .

[113]  C. Goodrich Petrogenesis of olivine-phyric shergottites Sayh Al Uhaymir 005 and elephant moraine A79001 lithology A , 2003 .

[114]  R. Greeley,et al.  Rock coatings and aeolian abrasion on Mars: Application to the Pathfinder landing site , 2000 .

[115]  L. Soderblom The composition and mineralogy of the Martian surface from spectroscopic observations - 0.3 micron to 50 microns , 1992 .

[116]  J. Michalski,et al.  Palagonite-like Alteration Products on the Earth and Mars I: Spectroscopy (0.4-25 microns) of Weathered Basalts and Silicate Alteration Products , 2005 .

[117]  R. Morris,et al.  Palagonitic (Not Andesitic) Mars: Evidence from Thermal Emission and VNIR Spectra of Palgonitic Alteration Rinds on Basaltic Rock , 2003 .

[118]  L. Soderblom The composition and mineralogy of the Martian surface from spectroscopic observations: 0.3 μm to 50 μm. , 1992 .

[119]  S. McLennan,et al.  Experimental epithermal alteration of synthetic Los Angeles meteorite: Implications for the origin of Martian soils and identification of hydrothermal sites on Mars , 2005 .