Microgravity experiments on the collisional behavior of Saturnian ring particles

[1]  P. Drossart,et al.  A close look at Saturn's rings with Cassini VIMS , 2008 .

[2]  T. Quinn,et al.  SIMULATIONS OF THE DYNAMICAL AND LIGHT-SCATTERING BEHAVIOR OF SATURN'S RINGS AND THE DERIVATION OF RING PARTICLE AND DISK PROPERTIES , 2008 .

[3]  J. Colwell,et al.  Low-Velocity Microgravity Impact Experiments into Simulated Regolith , 1999 .

[4]  S. Araki The dynamics of particle disks: III. Dense and spinning particle disks , 1990 .

[5]  D. Lin,et al.  Collisional properties of ice spheres at low impact velocities , 1988 .

[6]  G. Bossis,et al.  Velocity-dependent restitution coefficient and granular cooling in microgravity , 2009 .

[7]  I. Goldhirsch,et al.  Clustering instability in dissipative gases. , 1993, Physical review letters.

[8]  J. Colwell Low velocity impacts into dust: results from the COLLIDE-2 microgravity experiment , 2003 .

[9]  H. Salo,et al.  Viscous Overstability in Saturn's B Ring I. Direct Simulations and Measurement of Transport Coefficients , 2001 .

[10]  D. Lin,et al.  Structure, stability and evolution of Saturn's rings , 1984, Nature.

[11]  Thorsten Pöschel,et al.  Collision dynamics of granular particles with adhesion. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  J. Trulsen Towards a theory of jet streams , 1971 .

[13]  S. Tremaine,et al.  A granular flow model for dense planetary rings , 1985 .

[14]  Masahiko Arakawa,et al.  Size Dependence of Restitution Coefficients of Ice in Relation to Collision Strength , 1998 .

[15]  M. Louge,et al.  High apparent adhesion energy in the breakdown of normal restitution for binary impacts of small spheres at low speed , 2009 .

[16]  S. Tremaine,et al.  The velocity dispersion in Saturn's rings , 1978 .

[17]  G. E. Wood,et al.  Radio science investigations of the saturn system with voyager 1: preliminary results. , 1981, Science.

[18]  E. Marouf,et al.  Periodic microstructure in Saturn's rings A and B , 2007 .

[19]  J. Blum,et al.  THE PHYSICS OF PROTOPLANETESIMAL DUST AGGLOMERATES. VI. EROSION OF LARGE AGGREGATES AS A SOURCE OF MICROMETER-SIZED PARTICLES , 2011, 1103.0427.

[20]  J. Blum,et al.  A zero-gravity instrument to study low velocity collisions of fragile particles at low temperatures. , 2009, The Review of scientific instruments.

[21]  S. Tremaine,et al.  The dynamics of dense particle disks , 1987 .

[22]  F. Spahn,et al.  The influence of particle adhesion on the stability of agglomerates in Saturn's rings , 2006 .

[23]  H. Zebker,et al.  Particle size distributions in Saturn's rings from voyager 1 radio occultation , 1983 .

[24]  J. Blum,et al.  Experimental Investigations on Aggregate-Aggregate Collisions in the Early Solar Nebula , 1993 .

[25]  R. Clark,et al.  Self-Gravity Wake Structures in Saturn’s A Ring Revealed by Cassini VIMS , 2007 .

[26]  H. Salo Numerical simulations of dense collisional systems , 1991 .

[27]  K. A. Hämeen-Anttila An improved and generalized theory for the collisional evolution of Keplerian systems , 1978 .

[28]  S Luding,et al.  Cluster growth in two- and three-dimensional granular gases. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  C. Thornton,et al.  Kinetic description of coagulation and fragmentation in dilute granular particle ensembles , 2004 .

[30]  H. Salo,et al.  Viscous Overstability in Saturn's B-Ring: II. Hydrodynamic Theory and Comparison to Simulations , 2001 .

[31]  K. Supulver,et al.  The Coefficient of Restitution of Ice Particles in Glancing Collisions: Experimental Results for Unfrosted Surfaces , 1995 .

[32]  Jack Wisdom,et al.  Local simulations of planetary rings , 1986 .

[33]  P. Haff Grain flow as a fluid-mechanical phenomenon , 1983, Journal of Fluid Mechanics.

[34]  G. Leonard Tyler,et al.  Saturn's rings: Particle size distributions for thin layer models , 1985 .

[35]  M. Ernst,et al.  Extension of Haff's cooling law in granular flows , 1998, cond-mat/9807224.

[36]  L. Esposito,et al.  Self‐gravity wakes in Saturn's A ring measured by stellar occultations from Cassini , 2006 .

[37]  D. Crawford,et al.  Mass dependence of energy loss in collisions of icy spheres: An experimental study , 1996 .

[38]  N. Brilliantov,et al.  The role of particle collisions for the dynamics in planetary rings , 1995 .

[39]  L. Esposito,et al.  Self-gravity wakes and radial structure of Saturn's B ring , 2007 .

[40]  T. Roush,et al.  Compositions of Saturn's rings A, B, and C from high resolution near-infrared spectroscopic observations , 2003 .

[41]  Spahn,et al.  Model for collisions in granular gases. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  J. Burns,et al.  Cassini imaging of Saturn's rings. II. A wavelet technique for analysis of density waves and other radial structure in the rings , 2006, astro-ph/0610242.

[43]  Masahiko Arakawa,et al.  Measurements of restitution coefficients of ice at low temperatures , 1996 .

[44]  J. Blum,et al.  The Physics of Protoplanetesimal Dust Agglomerates. II. Low-Velocity Collision Properties , 2007, 0711.2148.

[45]  A. A. Common The Rings of Saturn , 1884, Nature.

[46]  Experimental Studies on the Aggregation Properties of Ice and Dust in Planet-Forming Regions , 2007, 1106.4760.