Self-organized anisotropic (Zr1−xSix)Ny nanocomposites grown by reactive sputter deposition

[1]  M. Odén,et al.  Anomalous epitaxial stability of (001) interfaces in ZrN/SiNx multilayers , 2014 .

[2]  L. Hultman,et al.  Self-organization during Growth of ZrN/SiNx Multilayers by Epitaxial Lateral Overgrowth , 2013 .

[3]  L. Hultman,et al.  Single-monolayer SiNx embedded in TiN : A first-principles study , 2010 .

[4]  C. Sandu,et al.  Control of morphology (ZrN crystallite size and SiNx layer thickness) in Zr–Si–N nanocomposite thin films , 2008 .

[5]  F. Eriksson,et al.  Effects of ion-assisted growth on the layer definition in Cr/Sc multilayers , 2008 .

[6]  I. Petrov,et al.  Growth and physical properties of epitaxial metastable Hf1 − xAlxN alloys deposited on MgO(001) by ultrahigh vacuum reactive magnetron sputtering , 2007 .

[7]  Sam Zhang,et al.  Nanocomposite thin films and coatings : processing, properties and performance , 2007 .

[8]  Viktor P. Astakhov,et al.  Effects of the cutting feed, depth of cut, and workpiece (bore) diameter on the tool wear rate , 2007 .

[9]  I. Fried,et al.  Thermal stability of nanostructured superhard coatings: A review , 2007 .

[10]  F. Lévy,et al.  Structure, morphology and electrical properties of sputtered Zr–Si–N thin films: From solid solution to nanocomposite , 2006 .

[11]  J. Pierson,et al.  Influence of the silicon concentration on the optical and electrical properties of reactively sputtered Zr-Si-N nanocomposite coatings , 2006 .

[12]  Ruifeng Zhang,et al.  On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti–Si–N system , 2006 .

[13]  J. Cairney,et al.  Zr–Si–N films fabricated using hybrid cathodic arc and chemical vapour deposition: Structure vs. properties , 2006 .

[14]  A. Flink,et al.  Influence of Si on the microstructure of arc evaporated (Ti,Si)N thin films; evidence for cubic solid solutions and their thermal stability , 2005 .

[15]  P. Zeman,et al.  Structure and properties of magnetron sputtered Zr–Si–N films with a high (≥25 at.%) Si content , 2005 .

[16]  J. Procházka,et al.  Different approaches to superhard coatings and nanocomposites , 2005 .

[17]  H. Seo,et al.  Growth and physical properties of epitaxial HfN layers on MgO(001) , 2004 .

[18]  J. Pierson,et al.  Structural changes in Zr–Si–N films vs. their silicon content , 2004 .

[19]  K. Nogi,et al.  Influence of sputtering conditions on microstructure and mechanical properties of Zr–Si–N films prepared by radio-frequency-reactive sputtering , 2003 .

[20]  M. Meshii,et al.  Microstructure and mechanical properties of Zr–Si–N films prepared by rf-reactive sputtering , 2002 .

[21]  I. Petrov,et al.  Growth of single-crystal CrN on MgO(001): Effects of low-energy ion-irradiation on surface morphological evolution and physical properties , 2002 .

[22]  I. Tomaszkiewicz Thermodynamics of Silicon Nitride. Standard molar enthalpy of formation of amorphous Si3N4 at 298.15 K , 2001 .

[23]  M. Zhou,et al.  The effects of Si addition on the structure and mechanical properties of ZrN thin films deposited by an r.f. reactive sputtering method , 2001 .

[24]  R. Hauert,et al.  From Alloying to Nanocomposites—Improved Performance of Hard Coatings , 2000 .

[25]  I. Petrov,et al.  Growth and physical properties of epitaxial metastable cubic TaN(001) , 1999 .

[26]  I. Petrov,et al.  Growth of poly- and single-crystal ScN on MgO(001): Role of low-energy N2+ irradiation in determining texture, microstructure evolution, and mechanical properties , 1998 .

[27]  M. Odén,et al.  Nanoindentation studies of single‐crystal (001)‐, (011)‐, and (111)‐oriented TiN layers on MgO , 1996 .

[28]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[29]  I. Petrov,et al.  Defect structure and phase transitions in epitaxial metastable cubic Ti0.5Al0.5N alloys grown on MgO(001) by ultra‐high‐vacuum magnetron sputter deposition , 1991 .

[30]  S. H. Sheng,et al.  Phase stabilities and decomposition mechanism in the Zr–Si–N system studied by combined ab initio DFT and thermodynamic calculation , 2011 .

[31]  F. Schäfers,et al.  Interface engineered ultrashort period Cr-Ti multilayers as high reflectance mirrors and polarizers for soft x rays of lambda = 2.74 nm wavelength. , 2006, Applied optics.

[32]  I. Petrov,et al.  Phase composition and microstructure of polycrystalline and epitaxial TaNx layers grown on oxidized Si(001) and MgO(001) by reactive magnetron sputter deposition , 2002 .