Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates
暂无分享,去创建一个
[1] Albert Cohen,et al. Wavelet methods in numerical analysis , 2000 .
[2] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[3] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[4] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[5] Stephan Dahlke. Besov Regularity for the Stokes Problem , 1999 .
[6] Wolfgang Dahmen,et al. Nonlinear Approximation and Adaptive Techniques for Solving Elliptic Operator Equations , 1997 .
[7] Claudio Canuto,et al. The wavelet element method. Part I: Construction and analysis. , 1997 .
[8] P. Grisvard. Singularities in Boundary Value Problems , 1992 .
[9] Pierre Gilles Lemarié-Rieusset. Analyses multi-résolutions non orthogonales, commutation entre projecteurs et derivation et ondelettes vecteurs à divergence nuIIe , 1992 .
[10] John E. Osborn,et al. Regularity of solutions of the Stokes problem in a polygonal domain , 1976 .
[11] Wolfgang Dahmen,et al. Composite wavelet bases for operator equations , 1999, Math. Comput..
[12] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[13] Wolfgang Dahmen,et al. Adaptive Wavelet Schemes for Elliptic Problems - Implementation and Numerical Experiments , 2001, SIAM J. Sci. Comput..
[14] Ricardo H. Nochetto,et al. An Adaptive Uzawa FEM for the Stokes Problem: Convergence without the Inf-Sup Condition , 2002, SIAM J. Numer. Anal..
[15] Wolfgang Dahmen,et al. Stable multiscale bases and local error estimation for elliptic problems , 1997 .
[16] Reinhard H Stephan Dahlke. Adaptive Wavelet Methods for Saddle Point Problems , 1999 .
[17] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[18] R. DeVore,et al. Besov regularity for elliptic boundary value problems , 1997 .
[19] W. Dahmen. Wavelet methods for PDEs — some recent developments , 2001 .
[20] Peter Oswald,et al. On Function Spaces Related to Finite Element Approximation Theory , 1990 .
[21] W. Dahmen,et al. Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .
[22] Angela Kunoth,et al. Wavelet Methods — Elliptic Boundary Value Problems and Control Problems , 2001 .
[23] Wolfgang Dahmen,et al. Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..