Distance optimal formation control on graphs with a tight convergence time guarantee

For the task of moving a set of indistinguishable agents on a connected graph with unit edge distance to an arbitrary set of goal vertices, free of collisions, we propose a fast distance optimal control algorithm that guides the agents into the desired formation. Moreover, we show that the algorithm also provides a tight convergence time guarantee (time optimality and distance optimality cannot be simultaneously satisfied). Our generic graph formulation allows the algorithm to be applied to scenarios such as grids with holes (modeling obstacles) in arbitrary dimensions. Simulations, available online1, confirm our theoretical developments.

[1]  Steven M. LaValle,et al.  Multi-agent Path Planning and Network Flow , 2012, WAFR.

[2]  Seth Hutchinson,et al.  Path planning for permutation-invariant multirobot formations , 2005, IEEE Transactions on Robotics.

[3]  Brian D. O. Anderson,et al.  The Multi-Agent Rendezvous Problem. Part 1: The Synchronous Case , 2007, SIAM J. Control. Optim..

[4]  Richard M. Murray,et al.  Information flow and cooperative control of vehicle formations , 2004, IEEE Transactions on Automatic Control.

[5]  Masafumi Yamashita,et al.  Distributed memoryless point convergence algorithm for mobile robots with limited visibility , 1999, IEEE Trans. Robotics Autom..

[6]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[7]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[8]  Yi Guo,et al.  A distributed and optimal motion planning approach for multiple mobile robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[9]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[10]  Mark H. Overmars,et al.  Coordinated path planning for multiple robots , 1998, Robotics Auton. Syst..

[11]  Srinivas Akella,et al.  Coordinating Multiple Robots with Kinodynamic Constraints Along Specified Paths , 2005, Int. J. Robotics Res..

[12]  Brian D. O. Anderson,et al.  The Multi-Agent Rendezvous Problem. Part 2: The Asynchronous Case , 2007, SIAM J. Control. Optim..

[13]  Tomás Lozano-Pérez,et al.  Deadlock-free and collision-free coordination of two robot manipulators , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[14]  Randal W. Beard,et al.  Consensus seeking in multiagent systems under dynamically changing interaction topologies , 2005, IEEE Transactions on Automatic Control.

[15]  Srinivas Akella,et al.  Coordinating Multiple Robots with Kinodynamic Constraints Along Specified Paths , 2005, Int. J. Robotics Res..

[16]  Thierry Siméon,et al.  Path coordination for multiple mobile robots: a resolution-complete algorithm , 2002, IEEE Trans. Robotics Autom..

[17]  S. Zucker,et al.  Toward Efficient Trajectory Planning: The Path-Velocity Decomposition , 1986 .

[18]  T. Murphey,et al.  Switching Rules for Decentralized Control with Simple Control Laws , 2007, 2007 American Control Conference.

[19]  Sonia Martínez,et al.  Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions , 2006, IEEE Transactions on Automatic Control.

[20]  Mireille E. Broucke,et al.  Local control strategies for groups of mobile autonomous agents , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[21]  Dinesh Manocha,et al.  Centralized path planning for multiple robots: Optimal decoupling into sequential plans , 2009, Robotics: Science and Systems.

[22]  Magnus Egerstedt,et al.  Automatic Generation of Persistent Formations for Multi-agent Networks Under Range Constraints , 2009, Mob. Networks Appl..

[23]  Martin Grötschel,et al.  Complexity, Oracles, and Numerical Computation , 1988 .

[24]  Mireille E. Broucke,et al.  Local control strategies for groups of mobile autonomous agents , 2004, IEEE Transactions on Automatic Control.

[25]  Veysel Gazi,et al.  Stability of an Asynchronous Swarm With Time-Dependent Communication Links , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[26]  Daniel Liberzon,et al.  Rendezvous without coordinates , 2008, 2008 47th IEEE Conference on Decision and Control.

[27]  Vijay Kumar,et al.  Leader-to-formation stability , 2004, IEEE Transactions on Robotics and Automation.

[28]  Mark H. Overmars,et al.  Prioritized motion planning for multiple robots , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[30]  Magnus Egerstedt,et al.  Graph-theoretic connectivity control of mobile robot networks , 2011, Proceedings of the IEEE.

[31]  Mireille E. Broucke,et al.  Curve Shortening and the Rendezvous Problem for Mobile Autonomous Robots , 2006, IEEE Transactions on Automatic Control.

[32]  Damjan Miklic,et al.  A discrete grid abstraction for formation control in the presence of obstacles , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.