A label-free untethered approach to single-molecule protein binding kinetics.

Single molecule approaches provide rich real-time dynamics of molecular interactions that are not accessible to ensemble measurements. Previous single molecule studies have relied on labeling and tethering, which alters the natural state of the protein. Here we use the double-nanohole (DNH) optical tweezer approach to measure protein binding kinetics at the single molecule level in a label-free, free-solution (untethered) way. The binding kinetics of human serum albumin (HSA) to tolbutamide and to phenytoin are in quantitative agreement with previous measurements, and our single-molecule approach reveals a biexponential behavior characteristic of a multistep process. The DNH optical tweezer is an inexpensive platform for studying the real-time binding kinetics of protein-small molecule interactions in a label-free, free-solution environment, which will be of interest to future studies including drug discovery.

[1]  Abhay Kotnala,et al.  Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins. , 2014, Biomedical optics express.

[2]  Dusan Nedeljkovic,et al.  Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip. , 2014, Optics express.

[3]  R. Gordon,et al.  Label-Free Free-Solution Single-Molecule Protein–Small Molecule Interaction Observed by Double-Nanohole Plasmonic Trapping , 2014 .

[4]  Xiaobo Yin,et al.  Giant suppression of photobleaching for single molecule detection via the Purcell effect. , 2013, Nano letters.

[5]  R. Quidant,et al.  Three-dimensional manipulation with scanning near-field optical nanotweezers. , 2013, Nature nanotechnology.

[6]  R. Gordon,et al.  Observing single protein binding by optical transmission through a double nanohole aperture in a metal film. , 2013, Biomedical optics express.

[7]  Wolfgang Wende,et al.  STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA , 2013, Nature Methods.

[8]  V. G. Truong,et al.  Spectroscopy, Manipulation and Trapping of Neutral Atoms, Molecules, and Other Particles Using Optical Nanofibers: A Review , 2013, Sensors.

[9]  P. Melentiev,et al.  Giant optical nonlinearity of a single plasmonic nanostructure. , 2013, Optics express.

[10]  Ana Zehtabi-Oskuie,et al.  Double nanohole optical trapping: dynamics and protein-antibody co-trapping. , 2013, Lab on a chip.

[11]  Brian A. Maxwell,et al.  Single-molecule Investigation of Substrate Binding Kinetics and Protein Conformational Dynamics of a B-family Replicative DNA Polymerase* , 2013, The Journal of Biological Chemistry.

[12]  E. M. Peterson,et al.  Microscopic rates of peptide-phospholipid bilayer interactions from single-molecule residence times. , 2012, Journal of the American Chemical Society.

[13]  K. Crozier,et al.  Plasmonic trapping with a gold nanopillar. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  V. Trezza,et al.  Human serum albumin: from bench to bedside. , 2012, Molecular aspects of medicine.

[15]  Andreas Henkel,et al.  Single unlabeled protein detection on individual plasmonic nanoparticles. , 2012, Nano letters.

[16]  Yi Li,et al.  Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity. , 2012, Nano letters.

[17]  Tridib Mondal,et al.  Binding of organic dyes with human serum albumin: a single-molecule study. , 2011, Chemistry, an Asian journal.

[18]  E. Schonbrun,et al.  Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. , 2011, Nature communications.

[19]  Reuven Gordon,et al.  Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. , 2011, Nano letters.

[20]  Tomáš Čižmár,et al.  Multiple optical trapping and binding: new routes to self-assembly , 2010 .

[21]  Romain Quidant,et al.  Self -induced back-action optical trapping of dielectric nanoparticles , 2009 .

[22]  J. Wayment,et al.  Single-molecule fluorescence imaging of peptide binding to supported lipid bilayers. , 2009, Analytical chemistry.

[23]  C. Craik,et al.  Trapping Moving Targets with Small Molecules , 2009, Science.

[24]  Ido Golding,et al.  Quantitative transcription factor binding kinetics at the single-molecule level. , 2008, Biophysical journal.

[25]  Robert Powers,et al.  Estimating protein-ligand binding affinity using high-throughput screening by NMR. , 2008, Journal of combinatorial chemistry.

[26]  Henrik S. Sørensen,et al.  Free-Solution, Label-Free Molecular Interactions Studied by Back-Scattering Interferometry , 2007, Science.

[27]  O. Dangles,et al.  Flavonoid-serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. , 2005, Biochimica et biophysica acta.

[28]  D. S. Hage,et al.  Quantitative analysis of allosteric drug-protein binding by biointeraction chromatography , 2004, Nature Biotechnology.

[29]  D. S. Hage,et al.  Studies of phenytoin binding to human serum albumin by high-performance affinity chromatography. , 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[30]  A. G. Bell,et al.  Enthalpy arrays. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  E. Peterman,et al.  Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. , 2004, The journal of physical chemistry. B.

[32]  M. Valero,et al.  Naproxen: Hydroxypropyl-β-Cyclodextrin:Polyvinylpyrrolidone Ternary Complex Formation , 2004 .

[33]  Michael P. MacDonald,et al.  Optical Tweezers: the next generation , 2002 .

[34]  A. Sułkowska,et al.  Interaction of drugs with bovine and human serum albumin , 2002 .

[35]  M. Otagiri,et al.  Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. , 2002, Biological & pharmaceutical bulletin.

[36]  D G Myszka,et al.  High-resolution and high-throughput protocols for measuring drug/human serum albumin interactions using BIACORE. , 2001, Analytical biochemistry.

[37]  Martin Müller,et al.  Selective Interaction Between Proteins and the Outermost Surface of Polyelectrolyte Multilayers: Influence of the Polyanion Type, pH and Salt , 2001 .

[38]  S. Havelund,et al.  Effect of fatty acids and selected drugs on the albumin binding of a long-acting, acylated insulin analogue. , 1997, Journal of pharmaceutical sciences.

[39]  S. Block,et al.  Construction of multiple-beam optical traps with nanometer-resolution position sensing , 1996 .

[40]  D. Cistola,et al.  Localization of tolbutamide binding sites on human serum albumin using titration calorimetry and heteronuclear 2-D NMR. , 1995, Biochemistry.

[41]  P W Smith,et al.  Four-wave mixing in an artificial Kerr medium. , 1981, Optics letters.

[42]  I. Sjöholm,et al.  Binding of drugs to human serum albumin. XIV. The theoretical basis for the interaction between phenytoin and valproate. , 1980, Molecular pharmacology.

[43]  G. Sudlow,et al.  The characterization of two specific drug binding sites on human serum albumin. , 1975, Molecular pharmacology.

[44]  J. Ladbury,et al.  Survey of the year 2005: literature on applications of isothermal titration calorimetry , 2007, Journal of molecular recognition : JMR.