A Random Walk on Rectangles Algorithm

In this article, we introduce an algorithm that simulates efficiently the first exit time and position from a rectangle (or a parallelepiped) for a Brownian motion that starts at any point inside. This method provides an exact way to simulate the first exit time and position from any polygonal domain and then to solve some Dirichlet problems, whatever the dimension. This method can be used as a replacement or complement of the method of the random walk on spheres and can be easily adapted to deal with Neumann boundary conditions or Brownian motion with a constant drift.

[1]  G. Mil’shtein,et al.  An algorithm for random walks over small ellipsoids for solving the general Dirichlet problem , 1993 .

[2]  Sylvain Maire Réduction de variance pour l'intégration numérique et pour le calcul critique en transport neutronique , 2001 .

[3]  Salvatore Torquato,et al.  EFFECTIVE CONDUCTIVITY, DIELECTRIC CONSTANT, AND DIFFUSION COEFFICIENT OF DIGITIZED COMPOSITE MEDIA VIA FIRST-PASSAGE-TIME EQUATIONS , 1999 .

[4]  Michael V. Tretyakov,et al.  SIMULATION OF A SPACE-TIME BOUNDED DIFFUSION , 1999 .

[5]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[6]  Chi-Ok Hwang,et al.  A Feynman-Kac path-integral implementation for Poisson's equation using an h-conditioned Green's function , 2003, Math. Comput. Simul..

[7]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[8]  L. A. Romero,et al.  A Monte Carlo method for Poisson's equation , 1990 .

[9]  Nikolai A. Simonov,et al.  Random Walk Algorithms for Estimating Effective Properties of Digitized Porous Media * , 2004, Monte Carlo Methods Appl..

[10]  Benoît Nœtinger,et al.  Up-Scaling of Double Porosity Fractured Media Using Continuous-Time Random Walks Methods , 2000 .

[11]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[12]  Karl K. Sabelfeld,et al.  Integral Formulation of the Boundary Value Problems and the Method of Random Walk on Spheres , 1995, Monte Carlo Methods Appl..

[13]  V. Linetsky On the transition densities for reflected diffusions , 2005, Advances in Applied Probability.

[14]  Karl K. Sabelfeld,et al.  Discrete random walk on large spherical grids generated by spherical means for PDEs * , 2004, Monte Carlo Methods Appl..

[15]  Nina Golyandina Convergence rate for spherical processes with shifted centres * , 2004, Monte Carlo Methods Appl..

[16]  Dirk Veestraeten,et al.  The Conditional Probability Density Function for a Reflected Brownian Motion , 2004 .

[17]  E. Zauderer,et al.  Partial Differential Equations of Applied Mathematics: Zauderer/Partial , 2006 .

[18]  M. E. Muller Some Continuous Monte Carlo Methods for the Dirichlet Problem , 1956 .

[19]  William H. Press,et al.  Numerical recipes in C , 2002 .

[20]  Fabien Campillo,et al.  A Monte Carlo method without grid for a fractured porous domain model , 2002, Monte Carlo Methods Appl..

[21]  A. Haji-sheikh,et al.  Heat Conduction Using Green's Function , 1992 .

[22]  M. Eastham,et al.  Theory of ordinary differential equations , 1970 .