OGLE-2019-BLG-0825: Constraints on the Source System and Effect on Binary-lens Parameters Arising from a Five-day Xallarap Effect in a Candidate Planetary Microlensing Event
暂无分享,去创建一个
D. Bennett | R. Poleski | K. Ulaczyk | M. Burgdorf | R. Pogge | K. Rybicki | M. Dominik | J. Skottfelt | A. Fukui | S. Rahvar | A. Udalski | R. Barry | C. Snodgrass | N. Peixinho | Seung-Lee Kim | V. Bozza | M. Hundertmark | J. Southworth | R. Poleski | Chung-Uk Lee | Yongseok Lee | Dong-Joo Lee | S. Cha | Dong-Jin Kim | P. Pietrukowicz | J. Skowron | S. Kozłowski | P. Iwanek | M. Wrona | M. Gromadzki | Y. Itow | Y. Matsubara | Y. Muraki | P. Longa-Peña | P. Tristram | M. Albrow | A. Gould | Y. Ryu | J. Yee | K. Hwang | I. Shin | Y. Shvartzvald | W. Zang | B.-G. Park | T. Sumi | I. Bond | N. Rattenbury | D. Suzuki | C. Ranc | F. Abe | A. Bhattacharya | H. Fujii | Y. Hirao | R. Kirikawa | I. Kondo | N. Koshimoto | S. Miyazaki | G. Olmschenk | A. Okamura | Y. Satoh | T. Toda | A. Vandorou | H. Yama | L. Haikala | S. Sajadian | J. Tregloan-Reed | Hyoun-Woo Kim | E. Khalouei | Y. Jung | Doeon Kim | K. Yamashita | Hongjing Yang | Stela Ishitani Silva | N. Bach-Møller | Sho Matsumoto | S. Chung | T. Ikeno | J. Hitchcock | P. Spyratos | P. Mr'oz | I. Soszy'nski | G. D’Ago | Ryusei Hamada | Mio Tomoyoshi | C. Han | U. Jørgensen | Michał K. Szymański | Katsuki Fujita | Kosuke Niwa
[1] M. Graham,et al. Zwicky Transient Facility and Globular Clusters: The Period–Luminosity and Period–Wesenheit Relations for Type II Cepheids , 2022, The Astronomical Journal.
[2] R. Pogge,et al. Mass Production of 2021 KMTNet Microlensing Planets. I , 2022, The Astronomical Journal.
[3] D. Bennett,et al. No Large Dependence of Planet Frequency on Galactocentric Distance , 2021, The Astrophysical Journal Letters.
[4] D. Bennett,et al. MOA-2006-BLG-074: Recognizing Xallarap Contaminants in Planetary Microlensing , 2021, The Astronomical Journal.
[5] B. Macintosh,et al. Understanding the Impacts of Stellar Companions on Planet Formation and Evolution: A Survey of Stellar and Planetary Companions within 25 pc , 2020, 2012.09190.
[6] Samson A. Johnson,et al. Revealing Short-period Exoplanets and Brown Dwarfs in the Galactic Bulge Using the Microlensing Xallarap Effect with the Nancy Grace Roman Space Telescope , 2020, 2010.10315.
[7] G. H'ebrard,et al. Determining the true mass of radial-velocity exoplanets with Gaia , 2020, Astronomy & Astrophysics.
[8] G. Ghisellini,et al. The best place and time to live in the Milky Way , 2020, Astronomy & Astrophysics.
[9] M. Ness,et al. The Age Distribution of Stars in the Milky Way Bulge , 2020, The Astrophysical Journal.
[10] V. Bourrier,et al. Why do warm Neptunes present nonzero eccentricity? , 2020, Astronomy & Astrophysics.
[11] C. H. Ling,et al. OGLE-2013-BLG-0911Lb: A Secondary on the Brown-dwarf Planet Boundary around an M Dwarf , 2019, The Astronomical Journal.
[12] A. Tokovinin,et al. Formation of close binaries by disc fragmentation and migration, and its statistical modelling , 2019, Monthly Notices of the Royal Astronomical Society.
[13] A. Santerne,et al. Detection and characterisation of 54 massive companions with the SOPHIE spectrograph , 2019, Astronomy & Astrophysics.
[14] Igor Soszyński,et al. Microlensing Optical Depth and Event Rate toward the Galactic Bulge from 8 yr of OGLE-IV Observations , 2019, The Astrophysical Journal Supplement Series.
[15] R. Poleski,et al. 12,660 Spotted Stars toward the OGLE Galactic Bulge Fields , 2019, The Astrophysical Journal.
[16] D. Bennett,et al. OGLE-2015-BLG-1670Lb: A Cold Neptune beyond the Snow Line in the Provisional WFIRST Microlensing Survey Field , 2018, The Astronomical Journal.
[17] C. Badenes,et al. The Close Binary Fraction of Solar-type Stars Is Strongly Anticorrelated with Metallicity , 2018, The Astrophysical Journal.
[18] J. Davenport,et al. A Significant Overluminosity in the Transiting Brown Dwarf CWW 89Ab , 2018, The Astronomical Journal.
[19] C. Prieto,et al. The Bulge Metallicity Distribution from the APOGEE Survey , 2017, 1712.01297.
[20] C. Prieto,et al. Stellar Multiplicity Meets Stellar Evolution and Metallicity: The APOGEE View , 2017, 1711.00660.
[21] Kaitlin M. Kratter,et al. Dynamical Formation of Close Binaries during the Pre-main-sequence Phase , 2017, 1706.09894.
[22] R. Pogge,et al. Korea Microlensing Telescope Network Microlensing Events from 2015: Event-finding Algorithm, Vetting, and Photometry , 2017, 1703.06883.
[23] D. Schneider,et al. Exploring the brown dwarf desert : new substellar companions from the SDSS-III MARVELS survey , 2017, 1702.01784.
[24] B. Gaudi,et al. Toward a Galactic Distribution of Planets. I. Methodology and Planet Sensitivities of the 2015 High-cadence Spitzer Microlens Sample , 2017, 1701.05191.
[25] T. Guillot,et al. SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period , 2015, 1511.00643.
[26] Kaspar von Braun,et al. STELLAR DIAMETERS AND TEMPERATURES. IV. PREDICTING STELLAR ANGULAR DIAMETERS , 2013, 1311.4901.
[27] J. Ge,et al. Statistical properties of brown dwarf companions: implications for different formation mechanisms , 2013, 1303.6442.
[28] R. Street,et al. Difference image analysis: extension to a spatially varying photometric scale factor and other considerations , 2012, 1210.2926.
[29] B. Scott Gaudi,et al. Microlensing Surveys for Exoplanets , 2012 .
[30] L. Girardi,et al. parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.
[31] C. Moutou,et al. SOPHIE velocimetry of Kepler transit candidates VII. A false-positive rate of 35% for Kepler close-in giant candidates , 2012, 1206.0601.
[32] S. Bloemen,et al. Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems , 2011 .
[33] K. Ulaczyk,et al. Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.
[34] M. R. Haas,et al. PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.
[35] Michel Mayor,et al. Search for brown-dwarf companions of stars , 2010, 1009.5991.
[36] Jean Surdej,et al. Realisation of a fully-deterministic microlensing observing strategy for inferring planet populations , 2010 .
[37] Nasa,et al. Tidal effects on brown dwarfs: application to the eclipsing binary 2MASS J05352184-0546085 - The anomalous temperature reversal in the context of tidal heating , 2010, 1002.1246.
[38] L. Szabados,et al. Observational studies of Cepheid amplitudes. I. Period-amplitude relationships for Galactic Cepheids , 2009, 0908.3561.
[39] J. Beaulieu,et al. Difference imaging photometry of blended gravitational microlensing events with a numerical kernel , 2009, 0905.3003.
[40] P. Bonifacio,et al. A new implementation of the infrared flux method using the 2MASS catalogue , 2009, 0901.3034.
[41] M. Dominik,et al. Planetary microlensing signals from the orbital motion of the source star around the common barycentre , 2008, 0810.3915.
[42] C. H. Ling,et al. A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192 , 2008, 0806.0025.
[43] P. Yock,et al. MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand , 2008, 0804.0653.
[44] Andrew Cumming,et al. The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.
[45] Ryo Kandori,et al. The Interstellar Extinction Law toward the Galactic Center. II. V, J, H, and Ks Bands , 2008, 0802.3559.
[46] D. M. Bramich,et al. A new algorithm for difference image analysis , 2008, 0802.1273.
[47] L. Carigi,et al. Chemical Evolution of the Galactic Bulge , 2006, astro-ph/0611879.
[48] S. Kenyon,et al. Planet Formation around Low-Mass Stars: The Moving Snow Line and Super-Earths , 2006, astro-ph/0609140.
[49] P. Eggleton,et al. A Mechanism for Producing Short-Period Binaries , 2006 .
[50] F. Adams,et al. Long-Term Evolution of Close Planets Including the Effects of Secular Interactions , 2006, astro-ph/0606349.
[51] J. Anderson,et al. Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common , 2006, astro-ph/0603276.
[52] J. Beaulieu,et al. Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.
[53] S. Udry,et al. Tertiary Companions to Close Spectroscopic Binaries , 2006, astro-ph/0601518.
[54] C. Lada. Stellar Multiplicity and the Initial Mass Function: Most Stars Are Single , 2006, astro-ph/0601375.
[55] A. Claret,et al. Tidal evolution and oscillations in binary stars , 2005 .
[56] A. Gould,et al. Systematic Analysis of 22 Microlensing Parallax Candidates , 2005, astro-ph/0506183.
[57] C. Lineweaver,et al. How Dry is the Brown Dwarf Desert? Quantifying the Relative Number of Planets, Brown Dwarfs, and Stellar Companions around Nearby Sun-like Stars , 2004, astro-ph/0412356.
[58] Shigeru Ida,et al. Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities , 2004, astro-ph/0408019.
[59] Gregory Laughlin,et al. The Core Accretion Model Predicts Few Jovian-Mass Planets Orbiting Red Dwarfs , 2004, astro-ph/0407309.
[60] B. Gibson,et al. The Galactic Habitable Zone and the Age Distribution of Complex Life in the Milky Way , 2003, Science.
[61] A. Gould. Resolution of the MACHO-LMC-5 Puzzle: The Jerk-Parallax Microlens Degeneracy , 2003, astro-ph/0311548.
[62] C. Melo. The short period multiplicity among T Tauri stars , 2003 .
[63] F. Allard,et al. Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003, astro-ph/0302293.
[64] B. Paczyński,et al. Acceleration and parallax effects in gravitational microlensing , 2002, astro-ph/0210370.
[65] K. Masuda,et al. Microlensing Optical Depth toward the Galactic Bulge from Microlensing Observations in Astrophysics Group Observations during 2000 with Difference Image Analysis , 2002, astro-ph/0207604.
[66] D. Brownlee,et al. The Galactic Habitable Zone: Galactic Chemical Evolution , 2001 .
[67] Peter P. Eggleton,et al. Orbital Evolution in Binary and Triple Stars, with an Application to SS Lacertae , 2001, astro-ph/0104126.
[68] T. Nakamura,et al. Real-time difference imaging analysis of moa galactic bulge observations during 2000 , 2001, astro-ph/0102181.
[69] C. Alard. Image subtraction using a space-varying kernel , 2000 .
[70] R. Paul Butler,et al. Planets Orbiting Other Suns , 2000 .
[71] Andrew Gould,et al. A Natural Formalism for Microlensing , 2000, astro-ph/0001421.
[72] B. Peterson,et al. Observations of the Binary Microlens Event MACHO 98-SMC-1 by the Microlensing Planet Search Collaboration , 1998, astro-ph/9812252.
[73] Seppo Mikkola,et al. Tidal friction in triple stars , 1998 .
[74] J. Holtzman,et al. The Luminosity Function and Initial Mass Function in the Galactic Bulge , 1998, astro-ph/9801321.
[75] R. Lupton,et al. A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.
[76] P. Kroupa,et al. The theoretical mass-magnitude relation of low mass stars and its metallicity dependence , 1997, astro-ph/9701213.
[77] A. Tomaney,et al. Expanding the Realm of Microlensing Surveys with Difference Image Photometry , 1996, astro-ph/9610066.
[78] A. Gould,et al. Einstein Radii from Binary-Source Lensing Events , 1996, astro-ph/9604031.
[79] David P. Bennett,et al. Detecting Earth-Mass Planets with Gravitational Microlensing , 1996, astro-ph/9603158.
[80] A. Gould,et al. The Mass Spectrum Of Machos From Parallax Measurements , 1994, astro-ph/9409036.
[81] Todd J. Henry,et al. The mass-luminosity relation for stars of mass 1.0 to 0.08 solar mass , 1993 .
[82] K. Griest,et al. Effect of binary sources on the search for massive astrophysical compact halo objects via microlensing , 1992 .
[83] Andrew Gould,et al. Extending the MACHO Search to approximately 10 6 M sub sun , 1992 .
[84] Andrew Gould,et al. Discovering Planetary Systems through Gravitational Microlenses , 1992 .
[85] Bohdan Paczynski,et al. Gravitational microlensing of the Galactic bulge stars , 1991 .
[86] Bohdan Paczynski,et al. Gravitational microlensing by the galactic halo , 1986 .
[87] Joaquín B. Ordieres Meré,et al. Testing parallaxes with local Cepheids and RR Lyrae stars , 2017 .
[88] R. Mathieu. Pre-Main-Sequence Binary Stars , 1994 .
[89] S. Tremaine,et al. Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .