OGLE-2019-BLG-0825: Constraints on the Source System and Effect on Binary-lens Parameters Arising from a Five-day Xallarap Effect in a Candidate Planetary Microlensing Event

We present an analysis of microlensing event OGLE-2019-BLG-0825. This event was identified as a planetary candidate by preliminary modeling. We find that significant residuals from the best-fit static binary-lens model exist and a xallarap effect can fit the residuals very well and significantly improves χ 2 values. On the other hand, by including the xallarap effect in our models, we find that binary-lens parameters such as mass ratio, q, and separation, s, cannot be constrained well. However, we also find that the parameters for the source system such as the orbital period and semimajor axis are consistent between all the models we analyzed. We therefore constrain the properties of the source system better than the properties of the lens system. The source system comprises a G-type main-sequence star orbited by a brown dwarf with a period of P ∼ 5 days. This analysis is the first to demonstrate that the xallarap effect does affect binary-lens parameters in planetary events. It would not be common for the presence or absence of the xallarap effect to affect lens parameters in events with long orbital periods of the source system or events with transits to caustics, but in other cases, such as this event, the xallarap effect can affect binary-lens parameters.

[1]  M. Graham,et al.  Zwicky Transient Facility and Globular Clusters: The Period–Luminosity and Period–Wesenheit Relations for Type II Cepheids , 2022, The Astronomical Journal.

[2]  R. Pogge,et al.  Mass Production of 2021 KMTNet Microlensing Planets. I , 2022, The Astronomical Journal.

[3]  D. Bennett,et al.  No Large Dependence of Planet Frequency on Galactocentric Distance , 2021, The Astrophysical Journal Letters.

[4]  D. Bennett,et al.  MOA-2006-BLG-074: Recognizing Xallarap Contaminants in Planetary Microlensing , 2021, The Astronomical Journal.

[5]  B. Macintosh,et al.  Understanding the Impacts of Stellar Companions on Planet Formation and Evolution: A Survey of Stellar and Planetary Companions within 25 pc , 2020, 2012.09190.

[6]  Samson A. Johnson,et al.  Revealing Short-period Exoplanets and Brown Dwarfs in the Galactic Bulge Using the Microlensing Xallarap Effect with the Nancy Grace Roman Space Telescope , 2020, 2010.10315.

[7]  G. H'ebrard,et al.  Determining the true mass of radial-velocity exoplanets with Gaia , 2020, Astronomy & Astrophysics.

[8]  G. Ghisellini,et al.  The best place and time to live in the Milky Way , 2020, Astronomy & Astrophysics.

[9]  M. Ness,et al.  The Age Distribution of Stars in the Milky Way Bulge , 2020, The Astrophysical Journal.

[10]  V. Bourrier,et al.  Why do warm Neptunes present nonzero eccentricity? , 2020, Astronomy & Astrophysics.

[11]  C. H. Ling,et al.  OGLE-2013-BLG-0911Lb: A Secondary on the Brown-dwarf Planet Boundary around an M Dwarf , 2019, The Astronomical Journal.

[12]  A. Tokovinin,et al.  Formation of close binaries by disc fragmentation and migration, and its statistical modelling , 2019, Monthly Notices of the Royal Astronomical Society.

[13]  A. Santerne,et al.  Detection and characterisation of 54 massive companions with the SOPHIE spectrograph , 2019, Astronomy & Astrophysics.

[14]  Igor Soszyński,et al.  Microlensing Optical Depth and Event Rate toward the Galactic Bulge from 8 yr of OGLE-IV Observations , 2019, The Astrophysical Journal Supplement Series.

[15]  R. Poleski,et al.  12,660 Spotted Stars toward the OGLE Galactic Bulge Fields , 2019, The Astrophysical Journal.

[16]  D. Bennett,et al.  OGLE-2015-BLG-1670Lb: A Cold Neptune beyond the Snow Line in the Provisional WFIRST Microlensing Survey Field , 2018, The Astronomical Journal.

[17]  C. Badenes,et al.  The Close Binary Fraction of Solar-type Stars Is Strongly Anticorrelated with Metallicity , 2018, The Astrophysical Journal.

[18]  J. Davenport,et al.  A Significant Overluminosity in the Transiting Brown Dwarf CWW 89Ab , 2018, The Astronomical Journal.

[19]  C. Prieto,et al.  The Bulge Metallicity Distribution from the APOGEE Survey , 2017, 1712.01297.

[20]  C. Prieto,et al.  Stellar Multiplicity Meets Stellar Evolution and Metallicity: The APOGEE View , 2017, 1711.00660.

[21]  Kaitlin M. Kratter,et al.  Dynamical Formation of Close Binaries during the Pre-main-sequence Phase , 2017, 1706.09894.

[22]  R. Pogge,et al.  Korea Microlensing Telescope Network Microlensing Events from 2015: Event-finding Algorithm, Vetting, and Photometry , 2017, 1703.06883.

[23]  D. Schneider,et al.  Exploring the brown dwarf desert : new substellar companions from the SDSS-III MARVELS survey , 2017, 1702.01784.

[24]  B. Gaudi,et al.  Toward a Galactic Distribution of Planets. I. Methodology and Planet Sensitivities of the 2015 High-cadence Spitzer Microlens Sample , 2017, 1701.05191.

[25]  T. Guillot,et al.  SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period , 2015, 1511.00643.

[26]  Kaspar von Braun,et al.  STELLAR DIAMETERS AND TEMPERATURES. IV. PREDICTING STELLAR ANGULAR DIAMETERS , 2013, 1311.4901.

[27]  J. Ge,et al.  Statistical properties of brown dwarf companions: implications for different formation mechanisms , 2013, 1303.6442.

[28]  R. Street,et al.  Difference image analysis: extension to a spatially varying photometric scale factor and other considerations , 2012, 1210.2926.

[29]  B. Scott Gaudi,et al.  Microlensing Surveys for Exoplanets , 2012 .

[30]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[31]  C. Moutou,et al.  SOPHIE velocimetry of Kepler transit candidates VII. A false-positive rate of 35% for Kepler close-in giant candidates , 2012, 1206.0601.

[32]  S. Bloemen,et al.  Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems , 2011 .

[33]  K. Ulaczyk,et al.  Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.

[34]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[35]  Michel Mayor,et al.  Search for brown-dwarf companions of stars , 2010, 1009.5991.

[36]  Jean Surdej,et al.  Realisation of a fully-deterministic microlensing observing strategy for inferring planet populations , 2010 .

[37]  Nasa,et al.  Tidal effects on brown dwarfs: application to the eclipsing binary 2MASS J05352184-0546085 - The anomalous temperature reversal in the context of tidal heating , 2010, 1002.1246.

[38]  L. Szabados,et al.  Observational studies of Cepheid amplitudes. I. Period-amplitude relationships for Galactic Cepheids , 2009, 0908.3561.

[39]  J. Beaulieu,et al.  Difference imaging photometry of blended gravitational microlensing events with a numerical kernel , 2009, 0905.3003.

[40]  P. Bonifacio,et al.  A new implementation of the infrared flux method using the 2MASS catalogue , 2009, 0901.3034.

[41]  M. Dominik,et al.  Planetary microlensing signals from the orbital motion of the source star around the common barycentre , 2008, 0810.3915.

[42]  C. H. Ling,et al.  A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192 , 2008, 0806.0025.

[43]  P. Yock,et al.  MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand , 2008, 0804.0653.

[44]  Andrew Cumming,et al.  The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.

[45]  Ryo Kandori,et al.  The Interstellar Extinction Law toward the Galactic Center. II. V, J, H, and Ks Bands , 2008, 0802.3559.

[46]  D. M. Bramich,et al.  A new algorithm for difference image analysis , 2008, 0802.1273.

[47]  L. Carigi,et al.  Chemical Evolution of the Galactic Bulge , 2006, astro-ph/0611879.

[48]  S. Kenyon,et al.  Planet Formation around Low-Mass Stars: The Moving Snow Line and Super-Earths , 2006, astro-ph/0609140.

[49]  P. Eggleton,et al.  A Mechanism for Producing Short-Period Binaries , 2006 .

[50]  F. Adams,et al.  Long-Term Evolution of Close Planets Including the Effects of Secular Interactions , 2006, astro-ph/0606349.

[51]  J. Anderson,et al.  Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common , 2006, astro-ph/0603276.

[52]  J. Beaulieu,et al.  Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.

[53]  S. Udry,et al.  Tertiary Companions to Close Spectroscopic Binaries , 2006, astro-ph/0601518.

[54]  C. Lada Stellar Multiplicity and the Initial Mass Function: Most Stars Are Single , 2006, astro-ph/0601375.

[55]  A. Claret,et al.  Tidal evolution and oscillations in binary stars , 2005 .

[56]  A. Gould,et al.  Systematic Analysis of 22 Microlensing Parallax Candidates , 2005, astro-ph/0506183.

[57]  C. Lineweaver,et al.  How Dry is the Brown Dwarf Desert? Quantifying the Relative Number of Planets, Brown Dwarfs, and Stellar Companions around Nearby Sun-like Stars , 2004, astro-ph/0412356.

[58]  Shigeru Ida,et al.  Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities , 2004, astro-ph/0408019.

[59]  Gregory Laughlin,et al.  The Core Accretion Model Predicts Few Jovian-Mass Planets Orbiting Red Dwarfs , 2004, astro-ph/0407309.

[60]  B. Gibson,et al.  The Galactic Habitable Zone and the Age Distribution of Complex Life in the Milky Way , 2003, Science.

[61]  A. Gould Resolution of the MACHO-LMC-5 Puzzle: The Jerk-Parallax Microlens Degeneracy , 2003, astro-ph/0311548.

[62]  C. Melo The short period multiplicity among T Tauri stars , 2003 .

[63]  F. Allard,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003, astro-ph/0302293.

[64]  B. Paczyński,et al.  Acceleration and parallax effects in gravitational microlensing , 2002, astro-ph/0210370.

[65]  K. Masuda,et al.  Microlensing Optical Depth toward the Galactic Bulge from Microlensing Observations in Astrophysics Group Observations during 2000 with Difference Image Analysis , 2002, astro-ph/0207604.

[66]  D. Brownlee,et al.  The Galactic Habitable Zone: Galactic Chemical Evolution , 2001 .

[67]  Peter P. Eggleton,et al.  Orbital Evolution in Binary and Triple Stars, with an Application to SS Lacertae , 2001, astro-ph/0104126.

[68]  T. Nakamura,et al.  Real-time difference imaging analysis of moa galactic bulge observations during 2000 , 2001, astro-ph/0102181.

[69]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[70]  R. Paul Butler,et al.  Planets Orbiting Other Suns , 2000 .

[71]  Andrew Gould,et al.  A Natural Formalism for Microlensing , 2000, astro-ph/0001421.

[72]  B. Peterson,et al.  Observations of the Binary Microlens Event MACHO 98-SMC-1 by the Microlensing Planet Search Collaboration , 1998, astro-ph/9812252.

[73]  Seppo Mikkola,et al.  Tidal friction in triple stars , 1998 .

[74]  J. Holtzman,et al.  The Luminosity Function and Initial Mass Function in the Galactic Bulge , 1998, astro-ph/9801321.

[75]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[76]  P. Kroupa,et al.  The theoretical mass-magnitude relation of low mass stars and its metallicity dependence , 1997, astro-ph/9701213.

[77]  A. Tomaney,et al.  Expanding the Realm of Microlensing Surveys with Difference Image Photometry , 1996, astro-ph/9610066.

[78]  A. Gould,et al.  Einstein Radii from Binary-Source Lensing Events , 1996, astro-ph/9604031.

[79]  David P. Bennett,et al.  Detecting Earth-Mass Planets with Gravitational Microlensing , 1996, astro-ph/9603158.

[80]  A. Gould,et al.  The Mass Spectrum Of Machos From Parallax Measurements , 1994, astro-ph/9409036.

[81]  Todd J. Henry,et al.  The mass-luminosity relation for stars of mass 1.0 to 0.08 solar mass , 1993 .

[82]  K. Griest,et al.  Effect of binary sources on the search for massive astrophysical compact halo objects via microlensing , 1992 .

[83]  Andrew Gould,et al.  Extending the MACHO Search to approximately 10 6 M sub sun , 1992 .

[84]  Andrew Gould,et al.  Discovering Planetary Systems through Gravitational Microlenses , 1992 .

[85]  Bohdan Paczynski,et al.  Gravitational microlensing of the Galactic bulge stars , 1991 .

[86]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[87]  Joaquín B. Ordieres Meré,et al.  Testing parallaxes with local Cepheids and RR Lyrae stars , 2017 .

[88]  R. Mathieu Pre-Main-Sequence Binary Stars , 1994 .

[89]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .