An iterative LMI approach to controller design and measurement selection in self-optimizing control

Self-optimizing control focuses on minimizing loss for processes in the presence of disturbances by holding selected controlled variables at constant set-points. The loss can further be reduced by controlling measurement combinations to constant values. Two methods for finding appropriate measurement combinations are the Null-space and the Exact local method. Both approaches offer sets with an infinite number of solutions that give the same loss. Since self-optimizing control is mainly concerned with minimizing the steady-state loss, little attention has been put on the dynamic performance when selecting measurement combinations.

[1]  Sigurd Skogestad Plantwide control: the search for the self-optimizing control structure , 2000 .

[2]  Vinay Kariwala,et al.  Optimal Measurement Combination for Local Self-Optimizing Control , 2007 .

[3]  Sigurd Skogestad,et al.  Perfect Steady-State Indirect Control , 2005 .

[4]  S. Skogestad Simple analytic rules for model reduction and PID controller tuning , 2004 .

[5]  Dimitri Peaucelle,et al.  From static output feedback to structured robust static output feedback: A survey , 2016, Annu. Rev. Control..

[6]  S. Skogestad DYNAMICS AND CONTROL OF DISTILLATION COLUMNS A tutorial introduction , 1997 .

[7]  Goele Pipeleers,et al.  Sufficient LMI conditions for reduced-order multi-objective H2/H∞ control of LTI systems , 2015, Eur. J. Control.

[8]  Boris Polyak,et al.  Mixed LMI/randomized methods for static output feedback control design , 2010, Proceedings of the 2010 American Control Conference.

[9]  R. Vinodha,et al.  Genetic Algorithm Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor , 2014, Adv. Artif. Intell..

[10]  Sigurd Skogestad,et al.  An industrial and academic perspective on plantwide control , 2011, Annu. Rev. Control..

[11]  P. Dorato,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[12]  S. Janardhanan,et al.  LOCAL SELF-OPTIMIZING CONTROL WITH AVERAGE LOSS MINIMIZATION , 2008 .

[13]  D. Peaucelle,et al.  An efficient numerical solution for H2 static output feedback synthesis , 2001, 2001 European Control Conference (ECC).

[14]  Sigurd Skogestad,et al.  Optimal Selection of Controlled Variables , 2003 .

[15]  Tore Hägglund,et al.  The future of PID control , 2000 .

[16]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[17]  Sigurd Skogestad,et al.  Control structure design for complete chemical plants , 2004, Comput. Chem. Eng..

[18]  Alireza Karimi,et al.  Robust Controller Design by Linear Programming with Application to a Double-Axis Positioning System , 2007 .

[19]  Dimitri Peaucelle,et al.  S-Variable Approach to LMI-Based Robust Control , 2014 .

[20]  S. Janardhanan,et al.  OPTIMAL MEASUREMENT COMBINATIONS AS CONTROLLED VARIABLES , 2007 .

[21]  Sigurd Skogestad,et al.  NULL SPACE METHOD FOR SELECTING OPTIMAL MEASUREMENT COMBINATIONS AS CONTROLLED VARIABLES , 2007 .

[22]  Karolos M. Grigoriadis,et al.  A Unified Algebraic Approach To Control Design , 1997 .

[23]  Ricardo C. L. F. Oliveira,et al.  Robust ℋ2 static output feedback to control an automotive throttle valve , 2014, 2014 American Control Conference.

[24]  Zwe-Lee Gaing A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004, IEEE Transactions on Energy Conversion.

[25]  Ramprasad Yelchuru Quantitative methods for controlled variables selection , 2012 .