Numerical computation of hypersingular integrals on the real semiaxis

In this paper we propose some different strategies to approximate hypersingular integrals ∫=0+∞G(x)(x−t)p+1dx,where p is a positive integer, t > 0 and the integral is understood in the Hadamard finite part sense. Hadamard Finite Part integrals (shortly FP integrals), regarded as pth derivative of Cauchy principal value integrals, are of interest in the solution of hypersingular BIE, which model many different kind of Physical and Engineering problems (see [1] and the references therein, [2], [3, 4]).

[1]  Gradimir V. Milovanović,et al.  Some numerical methods for second-kind Fredholm integral equations on the real semiaxis , 2009 .

[2]  Giovanni Monegato,et al.  Some new applications of truncated Gauss-Laguerre quadrature formulas , 2008, Numerical Algorithms.

[3]  Giuliana Criscuolo,et al.  Numerical evaluation of certain strongly singular integrals , 2014 .

[4]  Vladimir Rokhlin,et al.  Numerical quadratures for singular and hypersingular integrals , 2001 .

[5]  F. Rizzo,et al.  HYPERSINGULAR INTEGRALS: HOW SMOOTH MUST THE DENSITY BE? , 1996 .

[6]  J. Radok,et al.  Singular Integral Equations: Boundary problems of functions theory and their applications to mathematical physics , 1977 .

[7]  Nikolaos I. Ioakimidis,et al.  On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives , 1985 .

[8]  M. Diligenti,et al.  Numerical integration schemes for Petrov--Galerkin infinite BEM , 2008 .

[9]  George J. Tsamasphyros,et al.  Gauss quadrature rules for finite part integrals , 1990 .

[10]  Tatsuo Torii,et al.  Hilbert and Hadamard transforms by generalized Chebyshev expansion , 1994 .

[11]  Giovanni Monegato,et al.  Truncated Quadrature Rules Over (0, INFINITY) and Nyström-Type Methods , 2003, SIAM J. Numer. Anal..

[13]  Lp-convergence of Lagrange interpolation on the semiaxis , 2008 .

[14]  A. Frangi,et al.  A direct approach for boundary integral equations with high-order singularities , 2000 .

[15]  Giovanni Monegato,et al.  Numerical evaluation of hypersingular integrals , 1994 .

[16]  H. R. Kutt On the numerical evaluation of finite-part integrals involving an algebraic singularity , 1975 .

[17]  Donatella Occorsio,et al.  A method to evaluate the Hilbert transform on (0,  +∞) , 2011, Appl. Math. Comput..

[18]  G. Mastroianni,et al.  Lagrange Interpolation at Laguerre Zeros in Some Weighted Uniform Spaces , 2001 .

[19]  G. Criscuolo,et al.  Convergenza di formule gaussiane per il calcolo delle derivate di integrali A valor principale secondo Cauchy , 1987 .

[20]  Giovanni Monegato,et al.  The Euler-Maclaurin expansion and finite-part integrals , 1998, Numerische Mathematik.

[21]  M. C. D. Bonis,et al.  On the simultaneous approximation of a Hilbert transform and its derivatives on the real semiaxis , 2017 .

[22]  Giuseppe Mastroianni,et al.  Approximation of the Hilbert Transform on the real semiaxis using Laguerre zeros , 2002 .

[23]  Nicola Mastronardi,et al.  Some numerical algorithms to evaluate Hadamard finite-part integrals , 1996 .

[24]  G. Mastroianni,et al.  Numerical approximation of weakly singular integrals on the half line , 2002 .

[25]  Shuhuang Xiang,et al.  On uniform approximations to hypersingular finite-part integrals , 2016 .

[26]  Giovanni Monegato,et al.  Definitions, properties and applications of finite-part integrals , 2009 .