Fractional and nD systems: a continuous case

In the paper, a possibility of employing the 2D, and more generally nD systems approach for the analysis of linear fractional degree systems for the introduced here, so-called n-commensurate transfer functions is shown. This approach induces a significant reduction of an overall problem dimensionality and gives interesting insights for stability analysis.

[1]  Guillaume Blanc,et al.  Maître de conférences , 2010 .

[2]  Karolos M. Grigoriadis,et al.  A Unified Algebraic Approach To Control Design , 1997 .

[3]  Yangquan Chen,et al.  Robust controllability of interval fractional order linear time invariant systems , 2006, Signal Process..

[4]  Tian-Bo Deng,et al.  SVD-based design and new structures for variable fractional-delay digital filters , 2004, IEEE Transactions on Signal Processing.

[5]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[6]  Yangquan Chen,et al.  Robust stability check of fractional order linear time invariant systems with interval uncertainties , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[7]  Carsten W. Scherer,et al.  LPV control and full block multipliers , 2001, Autom..

[8]  Olivier Bachelier,et al.  An S-regularity approach to the robust analysis of descriptor models , 2008, 2008 47th IEEE Conference on Decision and Control.

[9]  A. Oustaloup La dérivation non entière , 1995 .

[10]  Tadeusz Kaczorek Reachability of Cone Fractional Continuous-Time Linear Systems , 2009, Int. J. Appl. Math. Comput. Sci..

[11]  Zhiping Lin,et al.  A direct-construction approach to multidimensional realization and LFR uncertainty modeling , 2008, Multidimens. Syst. Signal Process..

[12]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[13]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[14]  Anton Kummert,et al.  Fractional polynomials and nD systems , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[15]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[16]  J. A. Tenreiro Machado,et al.  Discrete-time fractional-order controllers , 2001 .

[17]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[18]  Pascal Gahinet,et al.  H/sub /spl infin// design with pole placement constraints: an LMI approach , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[19]  Shinji Hara,et al.  Generalized KYP lemma: unified frequency domain inequalities with design applications , 2005, IEEE Transactions on Automatic Control.

[20]  Yangquan Chen,et al.  Necessary and sufficient stability condition of fractional-order interval linear systems , 2008, Autom..

[21]  YangQuan Chen,et al.  Fractional-order systems and control : fundamentals and applications , 2010 .

[22]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[23]  Yangquan Chen,et al.  Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality , 2007, Appl. Math. Comput..

[24]  R. Roesser A discrete state-space model for linear image processing , 1975 .

[25]  Paul Pinsler Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen , 1936 .

[26]  Krzysztof Galkowski,et al.  State-space realisations of linear 2-D systems with extensions to the general nD (n>2) case , 2001 .

[27]  Y. Q. Chen,et al.  Using Fractional Order Adjustment Rules and Fractional Order Reference Models in Model-Reference Adaptive Control , 2002 .