Electrochemical biosensors based on advanced bioimmobilization matrices

Abstract Biosensors have experienced rapid, extensive development. To maintain the bioactivity of biomolecules and to give the electrochemical output signal required, appropriate bioimmobilization matrices for biomolecules are critical. In this review, we describe some advanced membrane materials (including hydrogels, sol-gel-derived organic-inorganic composites and lipid membranes), introduce electrochemical biosensors based on bioimmobilization materials and describe their performance. Biosensors operating in extreme conditions and displaying direct electron transfer with electrodes based on these advanced membrane materials are attractive. Recent developments in nanomaterials include biosensors, so we emphasize the intersection of nanomaterials with advanced membrane materials in biosensors.

[1]  Lei Su,et al.  Sol-gel-derived ceramic-carbon nanotube nanocomposite electrodes: tunable electrode dimension and potential electrochemical applications. , 2004, Analytical chemistry.

[2]  Shaojun Dong,et al.  Conducting polymer polypyrrole supported bilayer lipid membranes. , 2005, Biosensors & bioelectronics.

[3]  J. Brennan,et al.  Controlling the Material Properties and Biological Activity of Lipase within Sol−Gel Derived Bioglasses via Organosilane and Polymer Doping , 2000 .

[4]  Jinghong Li,et al.  A novel room temperature ionic liquid sol–gel matrix for amperometric biosensor application , 2005 .

[5]  Aiguo Wu,et al.  A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network. , 2002, Analytical chemistry.

[6]  Jonathan S. Dordick,et al.  Enzymatic catalysis in monophasic organic solvents , 1989 .

[7]  E. Wang,et al.  Direct electrochemistry of hemoglobin in egg-phosphatidylcholine films and its catalysis to H(2)O(2). , 2002, Biosensors & bioelectronics.

[8]  Jean-Louis Marty,et al.  Acetylcholinesterase in organic solvents for the detection of pesticides: Biosensor application , 1994 .

[9]  S. Dong,et al.  The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. , 2005, Biosensors & bioelectronics.

[10]  Won-Yong Lee,et al.  Amperometric phenol biosensor based on sol–gel silicate/Nafion composite film , 2003 .

[11]  O. Lev,et al.  Electrochemical Organization of Gold Nanoclusters in Three Dimensions as Thin Films from an Aminosilicate-Stabilized Gold Sol and Their Characterization , 2001 .

[12]  Shaojun Dong,et al.  Amperometric biosensor for tyrosinase inhibitors in a pure organic phase , 1996 .

[13]  E. Wang,et al.  Iodine-induced gold-nanoparticle fusion/fragmentation/aggregation and iodine-linked nanostructured assemblies on a glass substrate. , 2003, Angewandte Chemie.

[14]  Dimitrios P. Nikolelis,et al.  Biosensors Based on Thin Lipid Films and Liposomes , 1999 .

[15]  S. Dong,et al.  Diffusion‐Limited, Aggregation‐Based, Mesoscopic Assembly of Roughened Core–Shell Bimetallic Nanoparticles into Fractal Networks at the Air–Water Interface , 2002 .

[16]  S. Dong,et al.  A facile approach to immobilize protein for biosensor: self-assembled supported bilayer lipid membranes on glassy carbon electrode. , 2001, Biosensors & bioelectronics.

[17]  S. Dong,et al.  Functionalized inorganic–organic composite material derivated by sol–gel for construction of mediated amperometric hydrogen peroxide biosensor , 1999 .

[18]  Shaojun Dong,et al.  Some new aspects in biosensors. , 2002, Journal of biotechnology.

[19]  S. Dong,et al.  Synthesis of a self-gelatinizable grafting copolymer of poly(vinyl alcohol) for construction of an amperometric peroxidase electrode. , 1998, Analytical biochemistry.

[20]  J. Rusling Enzyme Bioelectrochemistry in Cast Biomembrane-Like Films , 1998 .

[21]  Nikolaos A. Peppas,et al.  Differential scanning calorimetry of crystallized PVA hydrogels , 1976 .

[22]  Xiaoyong Zou,et al.  An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film. , 2005, Analytical biochemistry.

[23]  S. Dong,et al.  Sol-gel thin-film immobilized soybean peroxidase biosensor for the amperometric determination of hydrogen peroxide in acid medium. , 1999, Analytical chemistry.

[24]  Shaojun Dong,et al.  Co-immobilized microbial biosensor for BOD estimation based on sol-gel derived composite material. , 2003, Biosensors & bioelectronics.

[25]  Itamar Willner,et al.  "Plugging into Enzymes": Nanowiring of Redox Enzymes by a Gold Nanoparticle , 2003, Science.

[26]  Joseph Wang,et al.  Sol–gel materials for electrochemical biosensors , 1999 .

[27]  Shaojun Dong,et al.  Organically Modified Sol‐Gel/Chitosan Composite Based Glucose Biosensor , 2003 .

[28]  Jinseok Heo,et al.  Microfluidic biosensor based on an array of hydrogel-entrapped enzymes. , 2005, Analytical chemistry.

[29]  F. Sheu,et al.  Nanostructured platinum-lipid bilayer composite as biosensor. , 2003, Bioelectrochemistry.

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  Joseph Wang,et al.  On-line organic-phase enzyme detector , 1993 .

[32]  David J. Best,et al.  THE DETERMINATION OF P-CRESOL IN CHLOROFORM WITH AN ENZYME ELECTRODE USED IN THE ORGANIC-PHASE , 1988 .

[33]  Bruce Dunn,et al.  Sol-gel encapsulation methods for biosensors , 1994 .

[34]  S. Dong,et al.  An organic-phase enzyme electrode based on an apparent direct electron transfer between a graphite electrode and immobilized horseradish peroxidase , 1995 .

[35]  K. Okuyama,et al.  Ordered cast films of an azobenzene-containing molecular membrane , 1984 .

[36]  Ovadia Lev,et al.  Diagnostic applications of organically doped sol-gel porous glass , 1992 .

[37]  G. Armatas,et al.  Metal-Dispersed Xerogel-Based Composite Films for the Development of Interference Free Oxidase-Based Biosensors , 2004 .

[38]  S. Dong,et al.  Silica sol-gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor. , 2000, Biosensors & bioelectronics.

[39]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[40]  E. Wang,et al.  A strategy for constructing a hybrid bilayer membrane based on a carbon substrate. , 2003, Analytical chemistry.

[41]  S. Dong,et al.  ORGANIC-PHASE ENZYME ELECTRODE OPERATED IN WATER-FREE SOLVENTS , 1994 .

[42]  Swee Ngin Tan,et al.  Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide , 1996 .

[43]  S. Dong,et al.  Electrochemical biosensing in extreme environment , 2002 .

[44]  H. Tien,et al.  Self-assembled bilayer lipid membranes: from mimicking biomembranes to practical applications☆ , 1997 .

[45]  Shaojun Dong,et al.  Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite. , 2006, Biosensors & bioelectronics.

[46]  L. Nagels,et al.  Polymer (bio)materials design for amperometric detection in LC and FIA , 2001 .

[47]  S. Dong,et al.  Cyro-hydrogel for the construction of a tyrosinase-based biosensor , 1996 .

[48]  S. Bharathi Sol-gel-derived nanocrystalline gold-silicate composite biosensor , 1998 .

[49]  Jun‐Jie Zhu,et al.  An electrochemical biosensor constructed by nanosized silver particles doped sol–gel film , 2004 .

[50]  P. He,et al.  Highly active horseradish peroxidase immobilized in 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol-gel host materials. , 2005, Chemical communications.

[51]  S. Tan,et al.  Amperometric hydrogen peroxide biosensor with silica sol-gel/chitosan film as immobilization matrix , 2001 .

[52]  Iqbal Gill,et al.  Bio-doped Nanocomposite Polymers: Sol-Gel Bioencapsulates , 2001 .

[53]  S. Dong,et al.  Amperometric biosensor for hydrogen peroxide based on sol-gel/hydrogel composite thin film , 2001 .

[54]  E. Wang,et al.  Lipid membrane immobilized horseradish peroxidase biosensor for amperometric determination of hydrogen peroxide. , 2003, Biosensors & bioelectronics.

[55]  Yi-ke Guo,et al.  Organic phase enzyme electrodes based on organohydrogel , 1997 .

[56]  John D. Brennan,et al.  Properties and applications of proteins encapsulated within sol–gel derived materials , 2002 .

[57]  T. Kunitake,et al.  CASTING OF SYNTHETIC BILAYER MEMBRANES ON GLASS AND SPECTRAL VARIATION OF MEMBRANE-BOUND CYANINE AND MEROCYANINE DYES , 1983 .

[58]  David Avnir,et al.  Enzymes and Other Proteins Entrapped in Sol-Gel Materials , 1994 .

[59]  F. Céspedes,et al.  New materials for electrochemical sensing. II. Rigid carbon-polymer biocomposites , 2000 .

[60]  Huangxian Ju,et al.  Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer , 1999 .

[61]  H. Tien,et al.  Sucrose influence on lecithin and polypyrrole lecithin bilayer membranes , 1989 .

[62]  S. Dong,et al.  Amperometric glucose biosensor based on sol-gel organic-inorganic hybrid material. , 1998, Analytical chemistry.

[63]  S. Dong,et al.  Hydrogen peroxide biosensor based on sol-gel-derived glasses doped with Eastman AQ polymer , 2001 .

[64]  E. Wang,et al.  Hydrogen peroxide biosensor based on microperoxidase-11 entrapped in lipid membrane. , 2003, Biosensors & bioelectronics.

[65]  T. Kato,et al.  A metal dispersed sol-gel biocomposite amperometric glucose biosensor. , 2003, Biosensors & bioelectronics.

[66]  Jing‐Juan Xu,et al.  Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. , 2005, Chemical communications.

[67]  S. Dong,et al.  Self-gelatinizable graft copolymer of poly(vinyl alcohol) with 4-vinylpyridine as an immobilization matrix for the construction of a tyrosinase-based amperometric biosensor , 1999 .

[68]  J A Cox,et al.  Chemical and biochemical sensors based on advances in materials chemistry. , 1999, Journal of pharmaceutical and biomedical analysis.

[69]  Shaojun Dong,et al.  CONSTRUCTION OF A TYROSINASE-BASED BIOSENSOR IN PURE ORGANIC-PHASE , 1995 .

[70]  Martin Pumera,et al.  New materials for electrochemical sensing VII. Microfluidic chip platforms , 2006 .

[71]  E. Wang,et al.  Formation of a supported hybrid bilayer membrane on gold: A sterically enhanced hydrophobic effect , 2002 .