Ploidy and DNA content of cape gooseberry populations grown in southern Brazil

ABSTRACT Studies detected chromosomal variability in genotypes of Physalis peruviana L. cultivated in Andean countries, with the existence of diploid and tetraploid genotypes and other variations. Knowledge about the ploidy level in cape gooseberry genotypes grown in southern Brazil is essential to define efficient breeding strategies, for example, in the knowledge of the effects caused by inbreeding and heterosis in obtaining commercial hybrids. The objective of this study was to determine the chromosome number and quantify nuclear DNA by flow cytometry in cape gooseberry populations grown in southern Brazil and in Andean populations. To this end, four cape gooseberry populations of different origins (from Lages and Caçador in Brazil, and Colombia and Peru) were subjected to classical cytogenetic analysis (chromosome counting) and flow cytometry. The chromosome number of the four populations was found to be 2n = 4x = 48, classifying them as polyploid with tetraploid cells. Uniformity was also detected in the amount of DNA, ranging from 12.87 to 13.98 pg, with low coefficients of variation (1.9 to 4.2%). The Tukey’s test confirmed the uniformity between populations as to the amount of DNA. Therefore, tetraploid cape gooseberry populations cultivated in southern Brazil have a 2C DNA mean of 13.23 pg. The chromosomal uniformity reveals that cultivation in Brazil was initially based on the sampling of a small number of plants purchased from Colombia, which may already have been subjected to selection for polyploidy.

[1]  M. Dekker,et al.  Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective , 2016 .

[2]  Pamela S Soltis,et al.  Polyploidy: Pitfalls and paths to a paradigm. , 2016, American journal of botany.

[3]  A. F. Guidolin,et al.  GROWTH VARIATION IN REPRODUCTIVE STRUCTURES OF PHYSALIS POPULATIONS , 2016 .

[4]  A. G. S. Liberato,et al.  Citogenética de genotipos de uchuva, Physalis peruviana L., y Physalis floridana Rydb., con respuesta diferencial a Fusarium oxysporum , 2015 .

[5]  G. Fischer,et al.  Comportamiento de tres genotipos de uchuva (Physalis peruviana L.) bajo diferentes sistemas de poda , 2014 .

[6]  G. Fischer,et al.  Importancia y cultivo de la uchuva (Physalis peruviana L.) , 2014 .

[7]  Jacob D. Washburn,et al.  Polyploids as a “model system” for the study of heterosis , 2013, Plant Reproduction.

[8]  J. Birchler Genetic Rules of Heterosis in Plants , 2013 .

[9]  G. Fischer,et al.  Agronomical evaluation of cape gooseberries (Physalis peruviana L.) from central and north-eastern Colombia , 2015 .

[10]  A. Moessner,et al.  Ploidy level determination within the context of in vitro breeding , 2011, Plant Cell, Tissue and Organ Culture (PCTOC).

[11]  B. Kilian,et al.  Genome size variation in diploid and tetraploid wild wheats , 2010, AoB PLANTS.

[12]  L. Leus,et al.  Mitotic chromosome doubling of plant tissues in vitro , 2010, Plant Cell, Tissue and Organ Culture (PCTOC).

[13]  C. I. M. Cano,et al.  Caracterización morfológica de cuarenta y seis accesiones de uchuva (Physalis peruviana L.), en Antioquia (Colombia) , 2008 .

[14]  S. Ochatt Flow cytometry in plant breeding , 2008, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[15]  F. Cabrera,et al.  Biología reproductiva de la uchuva , 2008 .

[16]  H. Criollo,et al.  Análisis de la aptitud combinatoria de algunas características del fruto de Physalis peruviana L. , 2015 .

[17]  H. Criollo,et al.  Combining ability analysis of some fruit traits of Physalis peruviana L. , 2007 .

[18]  Iván Darío Camargo Rodríguez,et al.  Nuevas perspectivas para el estudio de la asignación de biomasa y su relación con el funcionamiento de plantas en ecosistemas neotropicales , 2006 .

[19]  C. Rodríguez,et al.  Study of the cytogenetic diversity of Physalis peruviana L. (Solanaceae) , 2006 .

[20]  L. Natali,et al.  Nuclear DNA variability withinPisum sativum (Leguminosae): Cytophotometric analyses , 1990, Plant Systematics and Evolution.

[21]  Silvestres E Cultivadas POLIPLOIDIA E SEU IMPACTO NA ORIGEM E EVOLUÇÃO DAS PLANTAS , 2004 .

[22]  P. Balogh,et al.  Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.) , 2002, Plant Cell Reports.

[23]  F. Nuez,et al.  Genetic Analyses Indicate Superiority of Performance of Cape Gooseberry (Physalis peruviana L.) Hybrids , 2001 .

[24]  I. Leitch,et al.  Nuclear DNA Amounts in Angiosperms and their Modern Uses—807 New Estimates , 2000 .

[25]  B. Husband,et al.  THE EFFECT OF INBREEDING IN DIPLOID AND TETRAPLOID POPULATIONS OF EPILOBIUM ANGUSTIFOLIUM (ONAGRACEAE): IMPLICATIONS FOR THE GENETIC BASIS OF INBREEDING DEPRESSION , 1997, Evolution; international journal of organic evolution.

[26]  S. Brown,et al.  Genome Size Variation and Basic Chromosome Number in Pearl Millet and Fourteen Related Pennisetum Species , 1997 .

[27]  C. R. de Carvalho,et al.  An air drying technique for maize chromosomes without enzymatic maceration. , 1993, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[28]  C. Quirós Overview of the genetics and breeding of husk tomato , 1984 .

[29]  N. Simmonds Polyploidy in plant breeding. , 1980 .

[30]  M. Y. Menzel The cytotaxonomy and genetics of Physalis. , 1951 .

[31]  Kengo Yamamoto,et al.  ON THE CHROMOSOME NUMBER IN SOME SOLANACEAE , 1932 .