Ploidy and DNA content of cape gooseberry populations grown in southern Brazil
暂无分享,去创建一个
[1] M. Dekker,et al. Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective , 2016 .
[2] Pamela S Soltis,et al. Polyploidy: Pitfalls and paths to a paradigm. , 2016, American journal of botany.
[3] A. F. Guidolin,et al. GROWTH VARIATION IN REPRODUCTIVE STRUCTURES OF PHYSALIS POPULATIONS , 2016 .
[4] A. G. S. Liberato,et al. Citogenética de genotipos de uchuva, Physalis peruviana L., y Physalis floridana Rydb., con respuesta diferencial a Fusarium oxysporum , 2015 .
[5] G. Fischer,et al. Comportamiento de tres genotipos de uchuva (Physalis peruviana L.) bajo diferentes sistemas de poda , 2014 .
[6] G. Fischer,et al. Importancia y cultivo de la uchuva (Physalis peruviana L.) , 2014 .
[7] Jacob D. Washburn,et al. Polyploids as a “model system” for the study of heterosis , 2013, Plant Reproduction.
[8] J. Birchler. Genetic Rules of Heterosis in Plants , 2013 .
[9] G. Fischer,et al. Agronomical evaluation of cape gooseberries (Physalis peruviana L.) from central and north-eastern Colombia , 2015 .
[10] A. Moessner,et al. Ploidy level determination within the context of in vitro breeding , 2011, Plant Cell, Tissue and Organ Culture (PCTOC).
[11] B. Kilian,et al. Genome size variation in diploid and tetraploid wild wheats , 2010, AoB PLANTS.
[12] L. Leus,et al. Mitotic chromosome doubling of plant tissues in vitro , 2010, Plant Cell, Tissue and Organ Culture (PCTOC).
[13] C. I. M. Cano,et al. Caracterización morfológica de cuarenta y seis accesiones de uchuva (Physalis peruviana L.), en Antioquia (Colombia) , 2008 .
[14] S. Ochatt. Flow cytometry in plant breeding , 2008, Cytometry. Part A : the journal of the International Society for Analytical Cytology.
[15] F. Cabrera,et al. Biología reproductiva de la uchuva , 2008 .
[16] H. Criollo,et al. Análisis de la aptitud combinatoria de algunas características del fruto de Physalis peruviana L. , 2015 .
[17] H. Criollo,et al. Combining ability analysis of some fruit traits of Physalis peruviana L. , 2007 .
[18] Iván Darío Camargo Rodríguez,et al. Nuevas perspectivas para el estudio de la asignación de biomasa y su relación con el funcionamiento de plantas en ecosistemas neotropicales , 2006 .
[19] C. Rodríguez,et al. Study of the cytogenetic diversity of Physalis peruviana L. (Solanaceae) , 2006 .
[20] L. Natali,et al. Nuclear DNA variability withinPisum sativum (Leguminosae): Cytophotometric analyses , 1990, Plant Systematics and Evolution.
[21] Silvestres E Cultivadas. POLIPLOIDIA E SEU IMPACTO NA ORIGEM E EVOLUÇÃO DAS PLANTAS , 2004 .
[22] P. Balogh,et al. Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.) , 2002, Plant Cell Reports.
[23] F. Nuez,et al. Genetic Analyses Indicate Superiority of Performance of Cape Gooseberry (Physalis peruviana L.) Hybrids , 2001 .
[24] I. Leitch,et al. Nuclear DNA Amounts in Angiosperms and their Modern Uses—807 New Estimates , 2000 .
[25] B. Husband,et al. THE EFFECT OF INBREEDING IN DIPLOID AND TETRAPLOID POPULATIONS OF EPILOBIUM ANGUSTIFOLIUM (ONAGRACEAE): IMPLICATIONS FOR THE GENETIC BASIS OF INBREEDING DEPRESSION , 1997, Evolution; international journal of organic evolution.
[26] S. Brown,et al. Genome Size Variation and Basic Chromosome Number in Pearl Millet and Fourteen Related Pennisetum Species , 1997 .
[27] C. R. de Carvalho,et al. An air drying technique for maize chromosomes without enzymatic maceration. , 1993, Biotechnic & histochemistry : official publication of the Biological Stain Commission.
[28] C. Quirós. Overview of the genetics and breeding of husk tomato , 1984 .
[29] N. Simmonds. Polyploidy in plant breeding. , 1980 .
[30] M. Y. Menzel. The cytotaxonomy and genetics of Physalis. , 1951 .
[31] Kengo Yamamoto,et al. ON THE CHROMOSOME NUMBER IN SOME SOLANACEAE , 1932 .