Quasisymmetric and noncommutative skew Pieri rules

In this note we derive skew Pieri rules in the spirit of Assaf-McNamara for skew quasisymmetric Schur functions using the Hopf algebraic techniques of Lam-Lauve-Sottile, and recover the original rules of Assaf-McNamara as a special case. We then apply these techniques a second time to obtain skew Pieri rules for skew noncommutative Schur functions.

[1]  Frank Sottile,et al.  Skew Littlewood–Richardson Rules from Hopf Algebras , 2009 .

[2]  Sarah Mason A DECOMPOSITION OF SCHUR FUNCTIONS AND AN ANALOGUE OF THE ROBINSON-SCHENSTED-KNUTH ALGORITHM , 2006 .

[3]  Jeffrey Ferreira A Littlewood-Richardson type rule for row-strict quasisymmetric Schur functions , 2011 .

[4]  C. Reutenauer,et al.  Duality between Quasi-Symmetrical Functions and the Solomon Descent Algebra , 1995 .

[5]  Sarah Mason,et al.  Quasisymmetric Schur functions , 2011, J. Comb. Theory, Ser. A.

[6]  Ambar N. Sengupta Representations of S n , 2012 .

[7]  Stefan Mykytiuk,et al.  An Introduction to Quasisymmetric Schur Functions: Hopf Algebras, Quasisymmetric Functions, and Young Composition Tableaux , 2013 .

[8]  D. E. Littlewood,et al.  Group Characters and Algebra , 1934 .

[9]  Frank Sottile,et al.  Combinatorial Hopf algebras and generalized Dehn–Sommerville relations , 2003, Compositio Mathematica.

[10]  Donald E. Knuth,et al.  PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .

[11]  Cara Monical Set-Valued Skyline Fillings , 2016 .

[12]  Carol Bult,et al.  PERMUTATIONS , 1994 .

[14]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[15]  Vasu Tewari A Murnaghan-Nakayama rule for noncommutative Schur functions , 2016, Eur. J. Comb..

[16]  R. Ehrenborg On Posets and Hopf Algebras , 1996 .

[17]  Mike Zabrocki,et al.  Indecomposable modules for the dual immaculate basis of quasi-symmetric functions , 2013, 1304.1224.

[18]  Richard P. Stanley,et al.  Generalized Riffle Shuffles and Quasisymmetric Functions , 1999, math/9912025.

[19]  G. de B. Robinson,et al.  On the Representations of the Symmetric Group , 1938 .

[20]  Alain Lascoux,et al.  Noncommutative symmetric functions , 1994 .

[21]  Stephanie van Willigenburg,et al.  Skew quasisymmetric Schur functions and noncommutative Schur functions , 2010, 1007.0994.

[22]  Israel M. Gelfand,et al.  Noncommutative Symmetrical Functions , 1995 .

[23]  Nicholas A. Loehr,et al.  A combinatorial formula for Macdonald polynomials , 2005 .

[24]  I. Gessel Multipartite P-partitions and inner products of skew Schur functions , 1983 .

[25]  Vasu Tewari Backward Jeu de Taquin Slides for Composition Tableaux and a Noncommutative Pieri Rule , 2015, Electron. J. Comb..

[26]  Sami Assaf,et al.  Kohnert tableaux and a lifting of quasi-Schur functions , 2018, J. Comb. Theory, Ser. A.

[27]  Sami H. Assaf,et al.  A Pieri rule for skew shapes , 2009, J. Comb. Theory, Ser. A.

[28]  Aaron Lauve,et al.  QSym over Sym has a stable basis , 2011, J. Comb. Theory, Ser. A.

[29]  Sarah K. Mason,et al.  Row-Strict Quasisymmetric Schur Functions , 2011, 1110.4014.

[30]  S. V. Willigenburg,et al.  Modules of the 0-Hecke algebra and quasisymmetric Schur functions , 2014, 1403.1527.

[31]  Naihuan Jing,et al.  A lift of Schur's Q-functions to the peak algebra , 2015, J. Comb. Theory, Ser. A.

[32]  Jonathan M. Borwein,et al.  On the Representations of xy + yz + ZX , 2000, Exp. Math..

[33]  Stephanie van Willigenburg,et al.  Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions , 2016, J. Comb. Theory, Ser. A.

[34]  Daniel Krob,et al.  Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à q = 0 , 1996 .

[35]  Patricia Hersh,et al.  Random walks on quasisymmetric functions , 2007 .