Quasisymmetric and noncommutative skew Pieri rules
暂无分享,去创建一个
[1] Frank Sottile,et al. Skew Littlewood–Richardson Rules from Hopf Algebras , 2009 .
[2] Sarah Mason. A DECOMPOSITION OF SCHUR FUNCTIONS AND AN ANALOGUE OF THE ROBINSON-SCHENSTED-KNUTH ALGORITHM , 2006 .
[3] Jeffrey Ferreira. A Littlewood-Richardson type rule for row-strict quasisymmetric Schur functions , 2011 .
[4] C. Reutenauer,et al. Duality between Quasi-Symmetrical Functions and the Solomon Descent Algebra , 1995 .
[5] Sarah Mason,et al. Quasisymmetric Schur functions , 2011, J. Comb. Theory, Ser. A.
[6] Ambar N. Sengupta. Representations of S n , 2012 .
[7] Stefan Mykytiuk,et al. An Introduction to Quasisymmetric Schur Functions: Hopf Algebras, Quasisymmetric Functions, and Young Composition Tableaux , 2013 .
[8] D. E. Littlewood,et al. Group Characters and Algebra , 1934 .
[9] Frank Sottile,et al. Combinatorial Hopf algebras and generalized Dehn–Sommerville relations , 2003, Compositio Mathematica.
[10] Donald E. Knuth,et al. PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .
[11] Cara Monical. Set-Valued Skyline Fillings , 2016 .
[12] Carol Bult,et al. PERMUTATIONS , 1994 .
[14] C. Schensted. Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.
[15] Vasu Tewari. A Murnaghan-Nakayama rule for noncommutative Schur functions , 2016, Eur. J. Comb..
[16] R. Ehrenborg. On Posets and Hopf Algebras , 1996 .
[17] Mike Zabrocki,et al. Indecomposable modules for the dual immaculate basis of quasi-symmetric functions , 2013, 1304.1224.
[18] Richard P. Stanley,et al. Generalized Riffle Shuffles and Quasisymmetric Functions , 1999, math/9912025.
[19] G. de B. Robinson,et al. On the Representations of the Symmetric Group , 1938 .
[20] Alain Lascoux,et al. Noncommutative symmetric functions , 1994 .
[21] Stephanie van Willigenburg,et al. Skew quasisymmetric Schur functions and noncommutative Schur functions , 2010, 1007.0994.
[22] Israel M. Gelfand,et al. Noncommutative Symmetrical Functions , 1995 .
[23] Nicholas A. Loehr,et al. A combinatorial formula for Macdonald polynomials , 2005 .
[24] I. Gessel. Multipartite P-partitions and inner products of skew Schur functions , 1983 .
[25] Vasu Tewari. Backward Jeu de Taquin Slides for Composition Tableaux and a Noncommutative Pieri Rule , 2015, Electron. J. Comb..
[26] Sami Assaf,et al. Kohnert tableaux and a lifting of quasi-Schur functions , 2018, J. Comb. Theory, Ser. A.
[27] Sami H. Assaf,et al. A Pieri rule for skew shapes , 2009, J. Comb. Theory, Ser. A.
[28] Aaron Lauve,et al. QSym over Sym has a stable basis , 2011, J. Comb. Theory, Ser. A.
[29] Sarah K. Mason,et al. Row-Strict Quasisymmetric Schur Functions , 2011, 1110.4014.
[30] S. V. Willigenburg,et al. Modules of the 0-Hecke algebra and quasisymmetric Schur functions , 2014, 1403.1527.
[31] Naihuan Jing,et al. A lift of Schur's Q-functions to the peak algebra , 2015, J. Comb. Theory, Ser. A.
[32] Jonathan M. Borwein,et al. On the Representations of xy + yz + ZX , 2000, Exp. Math..
[33] Stephanie van Willigenburg,et al. Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions , 2016, J. Comb. Theory, Ser. A.
[34] Daniel Krob,et al. Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à q = 0 , 1996 .
[35] Patricia Hersh,et al. Random walks on quasisymmetric functions , 2007 .