Divide-and-conquer self-consistent field calculation for open-shell systems: Implementation and application

In this Letter, the divide-and-conquer (DC) linear-scaling self-consistent field method is extended to the spin-unrestricted Hartree–Fock (UHF) method or Kohn–Sham density functional theory (UDFT) for treating large open-shell systems. Although the DC method is one of the fragmentation-based linear-scaling schemes, the present DC-UHF/UDFT framework can avoid specifying the number of up- and down-spin electrons in each fragment by introducing up- and down-spin Fermi levels. Test calculations for oligothiophenes demonstrate the high efficiency and accuracy of the DC-UHF/UDFT method even for spin-delocalized systems.

[1]  Michael A Collins,et al.  Approximate ab initio energies by systematic molecular fragmentation. , 2005, The Journal of chemical physics.

[2]  Eric Schwegler,et al.  Linear scaling computation of the Hartree–Fock exchange matrix , 1996 .

[3]  Michael J. Frisch,et al.  A linear scaling method for Hartree–Fock exchange calculations of large molecules , 1996 .

[4]  Masato Kobayashi,et al.  Implementation of divide‐and‐conquer method including Hartree‐Fock exchange interaction , 2007, J. Comput. Chem..

[5]  Mark S. Gordon,et al.  New parallel optimal‐parameter fast multipole method (OPFMM) , 2001, J. Comput. Chem..

[6]  Masato Kobayashi,et al.  Electronic temperature in divide‐and‐conquer electronic structure calculation revisited: Assessment and improvement of self‐consistent field convergence , 2009 .

[7]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[8]  Feng Long Gu,et al.  Elongation method at restricted open-shell Hartree–Fock level of theory , 2005 .

[9]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[10]  Masato Kobayashi,et al.  Extension of linear-scaling divide-and-conquer-based correlation method to coupled cluster theory with singles and doubles excitations. , 2008, The Journal of chemical physics.

[11]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[12]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[13]  Masato Kobayashi,et al.  Divide-and-conquer-based linear-scaling approach for traditional and renormalized coupled cluster methods with single, double, and noniterative triple excitations. , 2009, The Journal of chemical physics.

[14]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[15]  Christian Ochsenfeld,et al.  Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices , 1998 .

[16]  Qingshi Zhu,et al.  Spin-unrestricted linear-scaling electronic structure theory and its application to magnetic carbon-doped boron nitride nanotubes. , 2005, The Journal of chemical physics.

[17]  Masato Kobayashi,et al.  Time-dependent Hartree–Fock frequency-dependent polarizability calculation applied to divide-and-conquer electronic structure method , 2010 .

[18]  A. Imamura,et al.  Application of the elongation method to the electronic structure of spin-polarized molecular wire under electric field , 2010 .

[19]  Masato Kobayashi,et al.  Dual-level hierarchical scheme for linear-scaling divide-and-conquer correlation theory† , 2009 .

[20]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[21]  Kimihiko Hirao,et al.  Linear-scaling multipole-accelerated Gaussian and finite-element Coulomb method. , 2008, The Journal of chemical physics.

[22]  Masato Kobayashi,et al.  Alternative linear-scaling methodology for the second-order Møller-Plesset perturbation calculation based on the divide-and-conquer method. , 2007, The Journal of chemical physics.

[23]  Masato Kobayashi,et al.  Second-order Møller-Plesset perturbation energy obtained from divide-and-conquer Hartree-Fock density matrix. , 2006, The Journal of chemical physics.

[24]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[25]  V Ganesh,et al.  Molecular tailoring approach for geometry optimization of large molecules: energy evaluation and parallelization strategies. , 2006, The Journal of chemical physics.

[26]  Kimihiko Hirao,et al.  Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals. , 2007, The Journal of chemical physics.

[27]  Spin unrestricted linear scaling electronic structure theory , 2005 .

[28]  Kenneth M Merz,et al.  Divide-and-Conquer Hartree-Fock Calculations on Proteins. , 2010, Journal of chemical theory and computation.

[29]  D. Scherlis,et al.  Structure and spin-state energetics of an iron porphyrin model: An assessment of theoretical methods , 2002 .

[30]  John Z. H. Zhang,et al.  Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy , 2003 .

[31]  Wei Li,et al.  An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules. , 2005, Journal of the American Chemical Society.

[32]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[33]  Weitao Yang,et al.  A density‐matrix divide‐and‐conquer approach for electronic structure calculations of large molecules , 1995 .

[34]  Kimihiko Hirao,et al.  A NEW ONE-PARAMETER PROGRESSIVE COLLE-SALVETTI-TYPE CORRELATION FUNCTIONAL , 1999 .

[35]  M. Blomberg,et al.  Transition-metal systems in biochemistry studied by high-accuracy quantum chemical methods. , 2000, Chemical reviews.

[36]  Kazuo Kitaura,et al.  The Fragment Molecular Orbital Method: Practical Applications to Large Molecular Systems , 2009 .

[37]  Shridhar R. Gadre,et al.  Molecular Tailoring Approach for Simulation of Electrostatic Properties , 1994 .

[38]  R. K. Nesbet,et al.  Self‐Consistent Orbitals for Radicals , 1954 .

[39]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[40]  Spencer R Pruitt,et al.  Open-Shell Formulation of the Fragment Molecular Orbital Method. , 2010, Journal of chemical theory and computation.

[41]  Peter Pulay,et al.  The Fourier transform Coulomb method: Efficient and accurate calculation of the Coulomb operator in a Gaussian basis , 2002 .

[42]  Masato Kobayashi,et al.  Is the divide-and-conquer Hartree–Fock method valid for calculations of delocalized systems? , 2007 .

[43]  Chakram S. Jayanthi,et al.  Order-/N methodologies and their applications , 2002 .

[44]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[45]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[46]  Kazuo Kitaura,et al.  Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. , 2007, The journal of physical chemistry. A.

[47]  K. Hirao,et al.  A long-range correction scheme for generalized-gradient-approximation exchange functionals , 2001 .

[48]  Yuji Mochizuki,et al.  Large scale MP2 calculations with fragment molecular orbital scheme , 2004 .

[49]  Kazuo Kitaura,et al.  Coupled-cluster theory based upon the fragment molecular-orbital method. , 2005, The Journal of chemical physics.

[50]  Shridhar R. Gadre,et al.  Ab initio quality one‐electron properties of large molecules: Development and testing of molecular tailoring approach , 2003, J. Comput. Chem..