Assigned and unassigned distance geometry: applications to biological molecules and nanostructures

Considering geometry based on the concept of distance, the results found by Menger and Blumenthal originated a body of knowledge called distance geometry. This survey covers some recent developments for assigned and unassigned distance geometry and focuses on two main applications: determination of three-dimensional conformations of biological molecules and nanostructures.

[1]  Michigan State University,et al.  Crystal structure solution from experimentally determined atomic pair distribution functions , 2010, 1003.1097.

[2]  Simon J. L. Billinge,et al.  The unassigned distance geometry problem , 2016, Discret. Appl. Math..

[3]  S J L Billinge,et al.  The Liga algorithm for ab initio determination of nanostructure. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[4]  Steven Skiena,et al.  Reconstructing sets from interpoint distances (extended abstract) , 1990, SCG '90.

[5]  Leo Liberti,et al.  On the computation of protein backbones by using artificial backbones of hydrogens , 2011, J. Glob. Optim..

[6]  C. Moukarzel An efficient algorithm for testing the generic rigidity of graphs in the plane , 1996 .

[7]  Nelson Maculan,et al.  Clifford Algebra and the Discretizable Molecular Distance Geometry Problem , 2015 .

[8]  Bruce Hendrickson,et al.  The Molecule Problem: Exploiting Structure in Global Optimization , 1995, SIAM J. Optim..

[9]  Markus Seibald,et al.  Ambiguities in the structure determination of antimony tellurides arising from almost homometric structure models and stacking disorder , 2010 .

[10]  Carlile Lavor,et al.  Extending the geometric build-up algorithm for the molecular distance geometry problem , 2008, Inf. Process. Lett..

[11]  G. Laman On graphs and rigidity of plane skeletal structures , 1970 .

[12]  Antonio Mucherino,et al.  Discretization orders and efficient computation of cartesian coordinates for distance geometry , 2014, Optimization Letters.

[13]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[14]  Qunfeng Dong,et al.  A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances , 2002, J. Glob. Optim..

[15]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[16]  Antonio Mucherino,et al.  Distance Geometry and Applications , 2015 .

[17]  M. Suchomel,et al.  An NMR-driven crystallography strategy to overcome the computability limit of powder structure determination: a layered aluminophosphate case. , 2013, Chemistry.

[18]  H. N. Chapman,et al.  Imaging Atomic Structure and Dynamics with Ultrafast X-ray Scattering , 2007, Science.

[19]  P M Duxbury,et al.  Ab-initio reconstruction of complex Euclidean networks in two dimensions. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Jacobs,et al.  Generic rigidity percolation: The pebble game. , 1995, Physical review letters.

[21]  Di Wu,et al.  An updated geometric build-up algorithm for solving the molecular distance geometry problems with sparse distance data , 2003, J. Glob. Optim..

[22]  Michael Nilges,et al.  Ambiguous NOEs and automated NOE assignment , 1998 .

[23]  Bill Jackson,et al.  Egerváry Research Group on Combinatorial Optimization Connected Rigidity Matroids and Unique Realizations of Graphs Connected Rigidity Matroids and Unique Realizations of Graphs , 2022 .

[24]  Leo Liberti,et al.  Noname manuscript No. (will be inserted by the editor) The Discretizable Distance Geometry Problem , 2022 .

[25]  Oktay Günlük,et al.  Discretization vertex orders in distance geometry , 2015, Discret. Appl. Math..

[26]  Marjorie Senechal A point set puzzle revisited , 2008, Eur. J. Comb..

[27]  M. Kanatzidis,et al.  Beyond Crystallography: The Study of Disorder, Nanocrystallinity and Crystallographically Challenged Materials with Pair Distribution Functions , 2004 .

[28]  Robert Connelly On Generic Global Rigidity , 1990, Applied Geometry And Discrete Mathematics.

[29]  Leo Liberti,et al.  Discretization orders for distance geometry problems , 2012, Optim. Lett..

[30]  Leo Liberti,et al.  Six mathematical gems from the history of distance geometry , 2015, Int. Trans. Oper. Res..

[31]  Antonio Mucherino,et al.  An adaptive branching scheme for the Branch & Prune algorithm applied to Distance Geometry , 2014, 2014 Federated Conference on Computer Science and Information Systems.

[32]  B. Hendrickson,et al.  An Algorithm for Two-Dimensional Rigidity Percolation , 1997 .

[33]  Brian D. O. Anderson,et al.  Rigidity, computation, and randomization in network localization , 2004, IEEE INFOCOM 2004.

[34]  Antonio Mucherino,et al.  A Pseudo de Bruijn Graph Representation for Discretization Orders for Distance Geometry , 2015, IWBBIO.

[35]  L. Lovász,et al.  On Generic Rigidity in the Plane , 1982 .

[36]  Tibor Jordán,et al.  Generic global rigidity of body-bar frameworks , 2013, J. Comb. Theory B.

[37]  Nelson Maculan,et al.  Discretization orders for protein side chains , 2014, Journal of Global Optimization.

[38]  W. Whiteley Counting out to the flexibility of molecules , 2005, Physical biology.

[39]  T. Herrmann,et al.  Advances in automated NMR protein structure determination , 2011, Quarterly Reviews of Biophysics.

[40]  William F. Punch,et al.  Ab initio Determination of Solid-State Nanostructure. , 2006 .

[41]  Tiong-Seng Tay,et al.  Rigidity of multi-graphs. I. Linking rigid bodies in n-space , 1984, J. Comb. Theory, Ser. B.

[42]  Antonio Mucherino On the Identification of Discretization Orders for Distance Geometry with Intervals , 2013, GSI.

[43]  Bruce Hendrickson,et al.  Conditions for Unique Graph Realizations , 1992, SIAM J. Comput..

[44]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  Leo Liberti,et al.  An algorithm to enumerate all possible protein conformations verifying a set of distance constraints , 2015, BMC Bioinformatics.

[46]  Simon J. L. Billinge,et al.  The nanostructure problem , 2010 .

[47]  László Pusztai,et al.  Reverse Monte Carlo modelling of the structure of disordered materials with RMC++ : a new implementation of the algorithm in C++ , 2005 .

[48]  Leo Liberti,et al.  The discretizable molecular distance geometry problem , 2006, Computational Optimization and Applications.

[49]  Simon J. L. Billinge Viewpoint: The nanostructure problem , 2010 .

[50]  Leo Liberti,et al.  On the number of realizations of certain Henneberg graphs arising in protein conformation , 2014, Discret. Appl. Math..

[51]  R. L. McGreevy,et al.  Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures , 1988 .

[52]  Martin Vetterli,et al.  Euclidean Distance Matrices: Essential theory, algorithms, and applications , 2015, IEEE Signal Processing Magazine.

[53]  Leo Liberti,et al.  The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances , 2011, Journal of Global Optimization.

[54]  Leo Liberti,et al.  Euclidean Distance Geometry and Applications , 2012, SIAM Rev..

[55]  Duxbury,et al.  Stressed backbone and elasticity of random central-force systems. , 1995, Physical review letters.

[56]  Leo Liberti,et al.  Influence of Pruning Devices on the Solution of Molecular Distance Geometry Problems , 2011, SEA.

[57]  B. Hendrickson,et al.  Regular ArticleAn Algorithm for Two-Dimensional Rigidity Percolation: The Pebble Game , 1997 .

[58]  M. Thorpe,et al.  Rigidity theory and applications , 2002 .

[59]  Mireille Boutin,et al.  Which Point Configurations Are Determined by the Distribution of their Pairwise Distances? , 2003, Int. J. Comput. Geom. Appl..

[60]  K. Wuethrich,et al.  The development of nuclear magnetic resonance spectroscopy as a technique for protein structure determination , 1989 .

[61]  Fabio C. L. Almeida,et al.  An Overview on Protein Structure Determination by NMR: Historical and Future Perspectives of the use of Distance Geometry Methods , 2013, Distance Geometry.

[62]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[63]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[64]  Leo Liberti,et al.  Distance Geometry: Theory, Methods, and Applications , 2013, Distance Geometry.

[65]  Babak Hassibi,et al.  Reconstruction of integers from pairwise distances , 2012, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[66]  A. L. Patterson Ambiguities in the X-Ray Analysis of Crystal Structures , 1944 .

[67]  Zhijun Wu,et al.  Distance Geometry Methods for Protein Structure Determination , 2013, Distance Geometry.

[68]  Jon M. Kleinberg,et al.  Reconstructing a three-dimensional model with arbitrary errors , 1996, STOC '96.

[69]  Leslie A Kuhn,et al.  Protein unfolding: Rigidity lost , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[70]  G. R. Satchler Elementary Scattering Theory , 1990 .

[71]  S. Torquato,et al.  Microstructural degeneracy associated with a two-point correlation function and its information content. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  Leo Liberti,et al.  The discretizable molecular distance geometry problem is easier on proteins , 2012 .

[73]  Simon J L Billinge,et al.  The Problem with Determining Atomic Structure at the Nanoscale , 2007, Science.

[74]  Qun Hui,et al.  RMCProfile: reverse Monte Carlo for polycrystalline materials , 2007, Journal of Physics: Condensed Matter.

[75]  A M Gronenborn,et al.  New methods of structure refinement for macromolecular structure determination by NMR. , 1998, Proceedings of the National Academy of Sciences of the United States of America.